File size: 16,161 Bytes
4f08713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image

import sys
import io
import os
import glob
import json
import zipfile
from tqdm import tqdm
from itertools import chain

import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

import clip.clip as clip
from clip.clip import _transform
from training.datasets import CellPainting
from clip.model import convert_weights, CLIPGeneral

from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from rdkit.Chem import DataStructs




basepath = os.path.dirname(__file__)

MODEL_PATH = os.path.join(basepath, "epoch_55.pt")
CLOOME_PATH = "/home/ana/gitrepos/hti-cloob"
npzs = os.path.join(basepath, "npzs")
imgname = "I1"
molecule_features = "all_molecule_cellpainting_features.pkl"
image_features = "subset_image_cellpainting_features.pkl"
images_arr = "subset_npzs_dict_200.npz"

device = "cuda" if torch.cuda.is_available() else "cpu"
model_type = "RN50"
image_resolution = 520

######### CLOOME FUNCTIONS #########
def convert_models_to_fp32(model):
    for p in model.parameters():
        p.data = p.data.float()
        if p.grad:
            p.grad.data = p.grad.data.float()


def load(model_path, device, model, image_resolution):
    state_dict = torch.load(model_path, map_location="cpu")
    state_dict = state_dict["state_dict"]

    model_config_file = f"{model.replace('/', '-')}.json"
    print('Loading model from', model_config_file)
    assert os.path.exists(model_config_file)
    with open(model_config_file, 'r') as f:
        model_info = json.load(f)
    model = CLIPGeneral(**model_info)
    convert_weights(model)
    convert_models_to_fp32(model)

    if str(device) == "cpu":
        model.float()
    print(device)

    new_state_dict = {k[len('module.'):]: v for k,v in state_dict.items()}

    model.load_state_dict(new_state_dict)
    model.to(device)
    model.eval()

    return model


def get_features(dataset, model, device):
    all_image_features = []
    all_text_features = []
    all_ids = []

    print(f"get_features {device}")
    print(len(dataset))

    with torch.no_grad():
        for batch in tqdm(DataLoader(dataset, num_workers=1, batch_size=64)):
            if type(batch) is dict:
                imgs = batch
                text_features = None
                mols = None
            elif type(batch) is torch.Tensor:
                mols = batch
                imgs = None
            else:
                imgs, mols = batch

            if mols is not None:
                text_features = model.encode_text(mols.to(device))
                text_features = text_features / text_features.norm(dim=-1, keepdim=True)
                all_text_features.append(text_features)
                molecules_exist = True

            if imgs is not None:
                images = imgs["input"]
                ids = imgs["ID"]

                img_features = model.encode_image(images.to(device))
                img_features = img_features / img_features.norm(dim=-1, keepdim=True)
                all_image_features.append(img_features)

                all_ids.append(ids)


        all_ids = list(chain.from_iterable(all_ids))

    if imgs is not None and mols is not None:
        return torch.cat(all_image_features), torch.cat(all_text_features), all_ids
    elif imgs is not None:
        return torch.cat(all_image_features), all_ids
    elif mols is not None:
        return torch.cat(all_text_features), all_ids
    return


def read_array(file):
    t = torch.load(file)
    features = t["mol_features"]
    ids = t["mol_ids"]
    return features, ids


def main(df, model_path, model, img_path=None, mol_path=None, image_resolution=None):
    # Load the model
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(torch.cuda.device_count())

    model = load(model_path, device, model, image_resolution)

    preprocess_val = _transform(image_resolution, image_resolution, is_train=False, normalize="dataset", preprocess="downsize")

    # Load the dataset
    val = CellPainting(df,
                       img_path,
                       mol_path,
                       transforms = preprocess_val)

    # Calculate the image features
    print("getting_features")
    result = get_features(val, model, device)

    if len(result) > 2:
        val_img_features, val_text_features, val_ids = result
        return val_img_features, val_text_features, val_ids
    else:
        val_img_features, val_ids = result
        return val_img_features, val_ids

    #val_img_features, val_ids = get_features(val, model, device)

    #return val_img_features, val_text_features, val_ids

def img_to_numpy(file):
    img = Image.open(file)
    arr = np.array(img)
    return arr


def illumination_threshold(arr, perc=0.0028):
    """ Return threshold value to not display a percentage of highest pixels"""

    perc = perc/100

    h = arr.shape[0]
    w = arr.shape[1]

    # find n pixels to delete
    total_pixels = h * w
    n_pixels = total_pixels * perc
    n_pixels = int(np.around(n_pixels))

    # find indexes of highest pixels
    flat_inds = np.argpartition(arr, -n_pixels, axis=None)[-n_pixels:]
    inds = np.array(np.unravel_index(flat_inds, arr.shape)).T

    max_values = [arr[i, j] for i, j in inds]

    threshold = min(max_values)

    return threshold


def process_image(arr):
    threshold = illumination_threshold(arr)
    scaled_img = sixteen_to_eight_bit(arr, threshold)
    return scaled_img


def sixteen_to_eight_bit(arr, display_max, display_min=0):
    threshold_image = ((arr.astype(float) - display_min) * (arr > display_min))

    scaled_image = (threshold_image * (256. / (display_max - display_min)))
    scaled_image[scaled_image > 255] = 255

    scaled_image = scaled_image.astype(np.uint8)

    return scaled_image


def process_image(arr):
    threshold = illumination_threshold(arr)
    scaled_img = sixteen_to_eight_bit(arr, threshold)
    return scaled_img


def process_sample(imglst, channels, filenames, outdir, outfile):
    sample = np.zeros((520, 696, 5), dtype=np.uint8)

    filenames_dict, channels_dict = {}, {}

    for i, (img, channel, fname) in enumerate(zip(imglst, channels, filenames)):
        print(channel)
        arr = img_to_numpy(img)
        arr = process_image(arr)

        sample[:,:,i] = arr

        channels_dict[i] = channel
        filenames_dict[channel] = fname

    sample_dict = dict(sample=sample,
                  channels=channels_dict,
                  filenames=filenames_dict)

    outfile = outfile + ".npz"
    outpath = os.path.join(outdir, outfile)

    np.savez(outpath, sample=sample, channels=channels, filenames=filenames)

    return sample_dict, outpath


def display_cellpainting(sample):
    arr = sample["sample"]
    r = arr[:, :, 0].astype(np.float32)
    g = arr[:, :, 3].astype(np.float32)
    b = arr[:, :, 4].astype(np.float32)

    rgb_arr = np.dstack((r, g, b))

    im = Image.fromarray(rgb_arr.astype("uint8"))
    im_rgb = im.convert("RGB")
    return im_rgb


def morgan_from_smiles(smiles, radius=3, nbits=1024, chiral=True):
    mol = Chem.MolFromSmiles(smiles)
    fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=3, nBits=nbits, useChirality=chiral)
    arr = np.zeros((0,), dtype=np.int8)
    DataStructs.ConvertToNumpyArray(fp,arr)
    return arr


def save_hdf(fps, index, outfile_hdf):
    ids = [i for i in range(len(fps))]
    columns = [str(i) for i in range(fps[0].shape[0])]
    df = pd.DataFrame(fps, index=ids, columns=columns)
    df.to_hdf(outfile_hdf, key="df", mode="w")
    return outfile_hdf


def create_index(outdir, ids, filename):
    filepath = os.path.join(outdir, filename)
    if type(ids) is str:
        values = [ids]
    else:
        values = ids
    data = {"SAMPLE_KEY": values}
    print(data)
    df = pd.DataFrame(data)
    df.to_csv(filepath)
    return filepath


def draw_molecules(smiles_lst):
    mols = [Chem.MolFromSmiles(s) for s in smiles_lst]
    mol_imgs = [Chem.Draw.MolToImage(m) for m in mols]
    return mol_imgs


def reshape_image(arr):
    c, h, w = arr.shape
    reshaped_image = np.empty((h, w, c))

    reshaped_image[:,:,0] = arr[0]
    reshaped_image[:,:,1] = arr[1]
    reshaped_image[:,:,2] = arr[2]

    reshaped_pil = Image.fromarray(reshaped_image.astype("uint8"))

    return reshaped_pil


# missing functions: save morgan to to_hdf, create index, load features, calculate similarities


#model = load(MODEL_PATH, device, model_type, image_resolution)

##### STREAMLIT FUNCTIONS ######
st.title('CLOOME: Contrastive Learning for Molecule Representation with Microscopy Images and Chemical Structures')


def main_page():
    st.markdown(
    """
    Contrastive learning for self-supervised representation learning has brought a
    strong improvement to many application areas, such as computer vision and natural
    language processing. With the availability of large collections of unlabeled data in
    vision and language, contrastive learning of language and image representations
    has shown impressive results. The contrastive learning methods CLIP and CLOOB
    have demonstrated that the learned representations are highly transferable to a
    large set of diverse tasks when trained on multi-modal data from two different
    domains. In drug discovery, similar large, multi-modal datasets comprising both
    cell-based microscopy images and chemical structures of molecules are available.

    However, contrastive learning has not yet been used for this type of multi-modal data,
    although transferable representations could be a remedy for the
    time-consuming and cost-expensive label acquisition in this domain. In this work,
    we present a contrastive learning method for image-based and structure-based
    representations of small molecules for drug discovery.

    Our method, Contrastive Leave One Out boost for Molecule Encoders (CLOOME), is based on CLOOB
    and comprises an encoder for microscopy data, an encoder for chemical structures
    and a contrastive learning objective. On the benchmark dataset ”Cell Painting”,
    we demonstrate the ability of our method to learn transferable representations by
    performing linear probing for activity prediction tasks. Additionally, we show that
    the representations could also be useful for bioisosteric replacement tasks.
    """
    )


def molecules_from_image():
    ## TODO: Check if expander can be automatically collapsed
    exp = st.expander("Upload a microscopy image")
    with exp:
        channels = ['Mito', 'ERSyto', 'ERSytoBleed', 'Ph_golgi', 'Hoechst']
        imglst, filenames = [], []

        for c in channels:
            file_obj = st.file_uploader(f'Choose a TIF image for {c}:', ".tif")
            if file_obj is not None:
                imglst.append(file_obj)
                filenames.append(file_obj.name)


    if imglst:
        if not os.path.isdir(npzs):
            os.mkdir(npzs)

        sample_dict, imgpath = process_sample(imglst, channels, filenames, npzs, imgname)
        print(imglst)


        i = display_cellpainting(sample_dict)
        st.image(i)

    uploaded_file = st.file_uploader("Choose a molecule file to retrieve from (optional)")

    if imglst:
        if uploaded_file is not None:
            molecule_df = pd.read_csv(uploaded_file)
            smiles = molecule_df["SMILES"].tolist()
            morgan = [morgan_from_smiles(s) for s in smiles]
            molnames = [f"M{i}" for i in range(len(morgan))]
            mol_index_fname = "mol_index.csv"
            mol_index = create_index(basepath, molnames, mol_index_fname)
            molpath = os.path.join(basepath, "mols.hdf")
            fps_fname = save_hdf(morgan, molnames, molpath)
            mol_imgs = draw_molecules(smiles)
            mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
            predefined_features = False
        else:
            mol_index = pd.read_csv("cellpainting-unique-molecule.csv")
            mol_features_torch = torch.load("all_molecule_cellpainting_features.pkl")
            mol_features = mol_features_torch["mol_features"]
            mol_ids = mol_features_torch["mol_ids"]
            print(len(mol_ids))
            predefined_features = True

        img_index_fname = "img_index.csv"
        img_index = create_index(basepath, imgname, img_index_fname)
        img_features, img_ids = main(img_index, MODEL_PATH, model_type, img_path=npzs, image_resolution=image_resolution)

        print(img_features.shape)
        print(mol_features.shape)

        logits = img_features @ mol_features.T
        mol_probs = (30.0 * logits).softmax(dim=-1)
        top_probs, top_labels = mol_probs.cpu().topk(5, dim=-1)

        # Delete this if want to allow retrieval for multiple images
        top_probs = torch.flatten(top_probs)
        top_labels = torch.flatten(top_labels)

        print(top_probs.shape)
        print(top_labels.shape)

        if predefined_features:
            mol_index.set_index(["SAMPLE_KEY"], inplace=True)
            top_ids = [mol_ids[i] for i in top_labels]
            smiles = mol_index.loc[top_ids]["SMILES"].tolist()
            mol_imgs = draw_molecules(smiles)

        with st.container():
            #st.write("Ranking of most similar molecules")
            columns = st.columns(len(top_probs))
            for i, col in enumerate(columns):
                if predefined_features:
                    image_id = i
                else:
                    image_id = top_labels[i]
                index = i+1
                col.image(mol_imgs[image_id], width=140, caption=index)

        print(mol_probs.sum(dim=-1))
        print((top_probs, top_labels))

def images_from_molecule():
    smiles = st.text_input("Enter a SMILES string", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
    if smiles:
        smiles = [smiles]
        morgan = [morgan_from_smiles(s) for s in smiles]
        molnames = [f"M{i}" for i in range(len(morgan))]
        mol_index_fname = "mol_index.csv"
        mol_index = create_index(basepath, molnames, mol_index_fname)
        molpath = os.path.join(basepath, "mols.hdf")
        fps_fname = save_hdf(morgan, molnames, molpath)
        mol_imgs = draw_molecules(smiles)

        mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)

        col1, col2, col3 = st.columns(3)

        with col1:
            st.write("")

        with col2:
            st.image(mol_imgs, width = 140)

        with col3:
            st.write("")


        img_features_torch = torch.load(image_features)
        img_features = img_features_torch["img_features"]
        img_ids = img_features_torch["img_ids"]

        logits = mol_features @ img_features.T
        img_probs = (30.0 * logits).softmax(dim=-1)
        top_probs, top_labels = img_probs.cpu().topk(5, dim=-1)

        top_probs = torch.flatten(top_probs)
        top_labels = torch.flatten(top_labels)

        img_index = pd.read_csv("cellpainting-all-imgpermol.csv")
        img_index.set_index(["SAMPLE_KEY"], inplace=True)
        top_ids = [img_ids[i] for i in top_labels]

        images_dict = np.load(images_arr, allow_pickle = True)

        with st.container():
            columns = st.columns(len(top_probs))
            for i, col in enumerate(columns):
                id = top_ids[i]
                id = f"{id}.npz"
                image = images_dict[id]

                ## TODO: generalize and functionalize
                im = reshape_image(image)

                index = i+1
                col.image(im, caption=index)


page_names_to_funcs = {
    "-": main_page,
    "Molecules from a microscopy image": molecules_from_image,
    "Microscopy images from a molecule": images_from_molecule,
}


selected_page = st.sidebar.selectbox("What would you like to retrieve?", page_names_to_funcs.keys())
page_names_to_funcs[selected_page]()

# print(img_features.shape)
# print(img_ids)