Spaces:
Sleeping
Sleeping
File size: 16,161 Bytes
4f08713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
import sys
import io
import os
import glob
import json
import zipfile
from tqdm import tqdm
from itertools import chain
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import clip.clip as clip
from clip.clip import _transform
from training.datasets import CellPainting
from clip.model import convert_weights, CLIPGeneral
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from rdkit.Chem import DataStructs
basepath = os.path.dirname(__file__)
MODEL_PATH = os.path.join(basepath, "epoch_55.pt")
CLOOME_PATH = "/home/ana/gitrepos/hti-cloob"
npzs = os.path.join(basepath, "npzs")
imgname = "I1"
molecule_features = "all_molecule_cellpainting_features.pkl"
image_features = "subset_image_cellpainting_features.pkl"
images_arr = "subset_npzs_dict_200.npz"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_type = "RN50"
image_resolution = 520
######### CLOOME FUNCTIONS #########
def convert_models_to_fp32(model):
for p in model.parameters():
p.data = p.data.float()
if p.grad:
p.grad.data = p.grad.data.float()
def load(model_path, device, model, image_resolution):
state_dict = torch.load(model_path, map_location="cpu")
state_dict = state_dict["state_dict"]
model_config_file = f"{model.replace('/', '-')}.json"
print('Loading model from', model_config_file)
assert os.path.exists(model_config_file)
with open(model_config_file, 'r') as f:
model_info = json.load(f)
model = CLIPGeneral(**model_info)
convert_weights(model)
convert_models_to_fp32(model)
if str(device) == "cpu":
model.float()
print(device)
new_state_dict = {k[len('module.'):]: v for k,v in state_dict.items()}
model.load_state_dict(new_state_dict)
model.to(device)
model.eval()
return model
def get_features(dataset, model, device):
all_image_features = []
all_text_features = []
all_ids = []
print(f"get_features {device}")
print(len(dataset))
with torch.no_grad():
for batch in tqdm(DataLoader(dataset, num_workers=1, batch_size=64)):
if type(batch) is dict:
imgs = batch
text_features = None
mols = None
elif type(batch) is torch.Tensor:
mols = batch
imgs = None
else:
imgs, mols = batch
if mols is not None:
text_features = model.encode_text(mols.to(device))
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
all_text_features.append(text_features)
molecules_exist = True
if imgs is not None:
images = imgs["input"]
ids = imgs["ID"]
img_features = model.encode_image(images.to(device))
img_features = img_features / img_features.norm(dim=-1, keepdim=True)
all_image_features.append(img_features)
all_ids.append(ids)
all_ids = list(chain.from_iterable(all_ids))
if imgs is not None and mols is not None:
return torch.cat(all_image_features), torch.cat(all_text_features), all_ids
elif imgs is not None:
return torch.cat(all_image_features), all_ids
elif mols is not None:
return torch.cat(all_text_features), all_ids
return
def read_array(file):
t = torch.load(file)
features = t["mol_features"]
ids = t["mol_ids"]
return features, ids
def main(df, model_path, model, img_path=None, mol_path=None, image_resolution=None):
# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(torch.cuda.device_count())
model = load(model_path, device, model, image_resolution)
preprocess_val = _transform(image_resolution, image_resolution, is_train=False, normalize="dataset", preprocess="downsize")
# Load the dataset
val = CellPainting(df,
img_path,
mol_path,
transforms = preprocess_val)
# Calculate the image features
print("getting_features")
result = get_features(val, model, device)
if len(result) > 2:
val_img_features, val_text_features, val_ids = result
return val_img_features, val_text_features, val_ids
else:
val_img_features, val_ids = result
return val_img_features, val_ids
#val_img_features, val_ids = get_features(val, model, device)
#return val_img_features, val_text_features, val_ids
def img_to_numpy(file):
img = Image.open(file)
arr = np.array(img)
return arr
def illumination_threshold(arr, perc=0.0028):
""" Return threshold value to not display a percentage of highest pixels"""
perc = perc/100
h = arr.shape[0]
w = arr.shape[1]
# find n pixels to delete
total_pixels = h * w
n_pixels = total_pixels * perc
n_pixels = int(np.around(n_pixels))
# find indexes of highest pixels
flat_inds = np.argpartition(arr, -n_pixels, axis=None)[-n_pixels:]
inds = np.array(np.unravel_index(flat_inds, arr.shape)).T
max_values = [arr[i, j] for i, j in inds]
threshold = min(max_values)
return threshold
def process_image(arr):
threshold = illumination_threshold(arr)
scaled_img = sixteen_to_eight_bit(arr, threshold)
return scaled_img
def sixteen_to_eight_bit(arr, display_max, display_min=0):
threshold_image = ((arr.astype(float) - display_min) * (arr > display_min))
scaled_image = (threshold_image * (256. / (display_max - display_min)))
scaled_image[scaled_image > 255] = 255
scaled_image = scaled_image.astype(np.uint8)
return scaled_image
def process_image(arr):
threshold = illumination_threshold(arr)
scaled_img = sixteen_to_eight_bit(arr, threshold)
return scaled_img
def process_sample(imglst, channels, filenames, outdir, outfile):
sample = np.zeros((520, 696, 5), dtype=np.uint8)
filenames_dict, channels_dict = {}, {}
for i, (img, channel, fname) in enumerate(zip(imglst, channels, filenames)):
print(channel)
arr = img_to_numpy(img)
arr = process_image(arr)
sample[:,:,i] = arr
channels_dict[i] = channel
filenames_dict[channel] = fname
sample_dict = dict(sample=sample,
channels=channels_dict,
filenames=filenames_dict)
outfile = outfile + ".npz"
outpath = os.path.join(outdir, outfile)
np.savez(outpath, sample=sample, channels=channels, filenames=filenames)
return sample_dict, outpath
def display_cellpainting(sample):
arr = sample["sample"]
r = arr[:, :, 0].astype(np.float32)
g = arr[:, :, 3].astype(np.float32)
b = arr[:, :, 4].astype(np.float32)
rgb_arr = np.dstack((r, g, b))
im = Image.fromarray(rgb_arr.astype("uint8"))
im_rgb = im.convert("RGB")
return im_rgb
def morgan_from_smiles(smiles, radius=3, nbits=1024, chiral=True):
mol = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=3, nBits=nbits, useChirality=chiral)
arr = np.zeros((0,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(fp,arr)
return arr
def save_hdf(fps, index, outfile_hdf):
ids = [i for i in range(len(fps))]
columns = [str(i) for i in range(fps[0].shape[0])]
df = pd.DataFrame(fps, index=ids, columns=columns)
df.to_hdf(outfile_hdf, key="df", mode="w")
return outfile_hdf
def create_index(outdir, ids, filename):
filepath = os.path.join(outdir, filename)
if type(ids) is str:
values = [ids]
else:
values = ids
data = {"SAMPLE_KEY": values}
print(data)
df = pd.DataFrame(data)
df.to_csv(filepath)
return filepath
def draw_molecules(smiles_lst):
mols = [Chem.MolFromSmiles(s) for s in smiles_lst]
mol_imgs = [Chem.Draw.MolToImage(m) for m in mols]
return mol_imgs
def reshape_image(arr):
c, h, w = arr.shape
reshaped_image = np.empty((h, w, c))
reshaped_image[:,:,0] = arr[0]
reshaped_image[:,:,1] = arr[1]
reshaped_image[:,:,2] = arr[2]
reshaped_pil = Image.fromarray(reshaped_image.astype("uint8"))
return reshaped_pil
# missing functions: save morgan to to_hdf, create index, load features, calculate similarities
#model = load(MODEL_PATH, device, model_type, image_resolution)
##### STREAMLIT FUNCTIONS ######
st.title('CLOOME: Contrastive Learning for Molecule Representation with Microscopy Images and Chemical Structures')
def main_page():
st.markdown(
"""
Contrastive learning for self-supervised representation learning has brought a
strong improvement to many application areas, such as computer vision and natural
language processing. With the availability of large collections of unlabeled data in
vision and language, contrastive learning of language and image representations
has shown impressive results. The contrastive learning methods CLIP and CLOOB
have demonstrated that the learned representations are highly transferable to a
large set of diverse tasks when trained on multi-modal data from two different
domains. In drug discovery, similar large, multi-modal datasets comprising both
cell-based microscopy images and chemical structures of molecules are available.
However, contrastive learning has not yet been used for this type of multi-modal data,
although transferable representations could be a remedy for the
time-consuming and cost-expensive label acquisition in this domain. In this work,
we present a contrastive learning method for image-based and structure-based
representations of small molecules for drug discovery.
Our method, Contrastive Leave One Out boost for Molecule Encoders (CLOOME), is based on CLOOB
and comprises an encoder for microscopy data, an encoder for chemical structures
and a contrastive learning objective. On the benchmark dataset ”Cell Painting”,
we demonstrate the ability of our method to learn transferable representations by
performing linear probing for activity prediction tasks. Additionally, we show that
the representations could also be useful for bioisosteric replacement tasks.
"""
)
def molecules_from_image():
## TODO: Check if expander can be automatically collapsed
exp = st.expander("Upload a microscopy image")
with exp:
channels = ['Mito', 'ERSyto', 'ERSytoBleed', 'Ph_golgi', 'Hoechst']
imglst, filenames = [], []
for c in channels:
file_obj = st.file_uploader(f'Choose a TIF image for {c}:', ".tif")
if file_obj is not None:
imglst.append(file_obj)
filenames.append(file_obj.name)
if imglst:
if not os.path.isdir(npzs):
os.mkdir(npzs)
sample_dict, imgpath = process_sample(imglst, channels, filenames, npzs, imgname)
print(imglst)
i = display_cellpainting(sample_dict)
st.image(i)
uploaded_file = st.file_uploader("Choose a molecule file to retrieve from (optional)")
if imglst:
if uploaded_file is not None:
molecule_df = pd.read_csv(uploaded_file)
smiles = molecule_df["SMILES"].tolist()
morgan = [morgan_from_smiles(s) for s in smiles]
molnames = [f"M{i}" for i in range(len(morgan))]
mol_index_fname = "mol_index.csv"
mol_index = create_index(basepath, molnames, mol_index_fname)
molpath = os.path.join(basepath, "mols.hdf")
fps_fname = save_hdf(morgan, molnames, molpath)
mol_imgs = draw_molecules(smiles)
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
predefined_features = False
else:
mol_index = pd.read_csv("cellpainting-unique-molecule.csv")
mol_features_torch = torch.load("all_molecule_cellpainting_features.pkl")
mol_features = mol_features_torch["mol_features"]
mol_ids = mol_features_torch["mol_ids"]
print(len(mol_ids))
predefined_features = True
img_index_fname = "img_index.csv"
img_index = create_index(basepath, imgname, img_index_fname)
img_features, img_ids = main(img_index, MODEL_PATH, model_type, img_path=npzs, image_resolution=image_resolution)
print(img_features.shape)
print(mol_features.shape)
logits = img_features @ mol_features.T
mol_probs = (30.0 * logits).softmax(dim=-1)
top_probs, top_labels = mol_probs.cpu().topk(5, dim=-1)
# Delete this if want to allow retrieval for multiple images
top_probs = torch.flatten(top_probs)
top_labels = torch.flatten(top_labels)
print(top_probs.shape)
print(top_labels.shape)
if predefined_features:
mol_index.set_index(["SAMPLE_KEY"], inplace=True)
top_ids = [mol_ids[i] for i in top_labels]
smiles = mol_index.loc[top_ids]["SMILES"].tolist()
mol_imgs = draw_molecules(smiles)
with st.container():
#st.write("Ranking of most similar molecules")
columns = st.columns(len(top_probs))
for i, col in enumerate(columns):
if predefined_features:
image_id = i
else:
image_id = top_labels[i]
index = i+1
col.image(mol_imgs[image_id], width=140, caption=index)
print(mol_probs.sum(dim=-1))
print((top_probs, top_labels))
def images_from_molecule():
smiles = st.text_input("Enter a SMILES string", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
if smiles:
smiles = [smiles]
morgan = [morgan_from_smiles(s) for s in smiles]
molnames = [f"M{i}" for i in range(len(morgan))]
mol_index_fname = "mol_index.csv"
mol_index = create_index(basepath, molnames, mol_index_fname)
molpath = os.path.join(basepath, "mols.hdf")
fps_fname = save_hdf(morgan, molnames, molpath)
mol_imgs = draw_molecules(smiles)
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
col1, col2, col3 = st.columns(3)
with col1:
st.write("")
with col2:
st.image(mol_imgs, width = 140)
with col3:
st.write("")
img_features_torch = torch.load(image_features)
img_features = img_features_torch["img_features"]
img_ids = img_features_torch["img_ids"]
logits = mol_features @ img_features.T
img_probs = (30.0 * logits).softmax(dim=-1)
top_probs, top_labels = img_probs.cpu().topk(5, dim=-1)
top_probs = torch.flatten(top_probs)
top_labels = torch.flatten(top_labels)
img_index = pd.read_csv("cellpainting-all-imgpermol.csv")
img_index.set_index(["SAMPLE_KEY"], inplace=True)
top_ids = [img_ids[i] for i in top_labels]
images_dict = np.load(images_arr, allow_pickle = True)
with st.container():
columns = st.columns(len(top_probs))
for i, col in enumerate(columns):
id = top_ids[i]
id = f"{id}.npz"
image = images_dict[id]
## TODO: generalize and functionalize
im = reshape_image(image)
index = i+1
col.image(im, caption=index)
page_names_to_funcs = {
"-": main_page,
"Molecules from a microscopy image": molecules_from_image,
"Microscopy images from a molecule": images_from_molecule,
}
selected_page = st.sidebar.selectbox("What would you like to retrieve?", page_names_to_funcs.keys())
page_names_to_funcs[selected_page]()
# print(img_features.shape)
# print(img_ids)
|