Spaces:
Runtime error
MuseV English 中文
MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising
Zhiqiang Xia *,
Zhaokang Chen*,
Bin Wu†,
Chao Li,
Kwok-Wai Hung,
Chao Zhan,
Yingjie He,
Wenjiang Zhou
(*co-first author, †Corresponding Author, [email protected])
github huggingface HuggingfaceSpace project Technical report (comming soon)
We have setup the world simulator vision since March 2023, believing diffusion models can simulate the world. MuseV
was a milestone achieved around July 2023. Amazed by the progress of Sora, we decided to opensource MuseV
, hopefully it will benefit the community. Next we will move on to the promising diffusion+transformer scheme.
Update: We have released MuseTalk, a real-time high quality lip sync model, which can be applied with MuseV as a complete virtual human generation solution.
Overview
MuseV
is a diffusion-based virtual human video generation framework, which
- supports infinite length generation using a novel Visual Conditioned Parallel Denoising scheme.
- checkpoint available for virtual human video generation trained on human dataset.
- supports Image2Video, Text2Image2Video, Video2Video.
- compatible with the Stable Diffusion ecosystem, including
base_model
,lora
,controlnet
, etc. - supports multi reference image technology, including
IPAdapter
,ReferenceOnly
,ReferenceNet
,IPAdapterFaceID
. - training codes (comming very soon).
Important bug fixes
musev_referencenet_pose
: model_name ofunet
,ip_adapter
of Command is not correct, please usemusev_referencenet_pose
instead ofmusev_referencenet
.
News
- [03/27/2024] release
MuseV
project and trained modelmusev
,muse_referencenet
. - [03/30/2024] add huggingface space gradio to generate video in gui
Model
Overview of model structure
Parallel denoising
Cases
All frames were generated directly from text2video model, without any post process.
Examples bellow can be accessed at configs/tasks/example.yaml
MoreCase is in project
Text/Image2Video
Human
image | video | prompt |
(masterpiece, best quality, highres:1),(1boy, solo:1),(eye blinks:1.8),(head wave:1.3) | ||
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face, soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3) | ||
(masterpiece, best quality, highres:1), peaceful beautiful sea scene | ||
(masterpiece, best quality, highres:1), peaceful beautiful sea scene | ||
(masterpiece, best quality, highres:1), playing guitar | ||
(masterpiece, best quality, highres:1), playing guitar | ||
(masterpiece, best quality, highres:1), playing guitar | ||
(masterpiece, best quality, highres:1), playing guitar | ||
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3),Chinese ink painting style | ||
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face, soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3) | ||
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3) | ||
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3), animate | ||
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face, soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3) |
Scene
image | video | prompt |
(masterpiece, best quality, highres:1), peaceful beautiful waterfall, an endless waterfall | ||
(masterpiece, best quality, highres:1), peaceful beautiful river | ||
(masterpiece, best quality, highres:1), peaceful beautiful sea scene |
VideoMiddle2Video
pose2video
In duffy
mode, pose of the vision condition frame is not aligned with the first frame of control video. posealign
will solve the problem.
image | video | prompt |
(masterpiece, best quality, highres:1) , a girl is dancing, animation | ||
(masterpiece, best quality, highres:1), is dancing, animation |
MuseTalk
The character of talk, Sun Xinying
is a supermodel KOL. You can follow her on douyin.
name | video |
talk | |
talk | |
sing |
TODO:
- technical report (comming soon).
- training codes.
- release pretrained unet model, which is trained with controlnet、referencenet、IPAdapter, which is better on pose2video.
- support diffusion transformer generation framework.
- release
posealign
module
Quickstart
Prepare python environment and install extra package like diffusers
, controlnet_aux
, mmcm
.
Prepare environment
You are recommended to use docker
primarily to prepare python environment.
prepare python env
Attention: we only test with docker, there are maybe trouble with conda, or requirement. We will try to fix it. Use docker
Please.
Method 1: docker
- pull docker image
docker pull anchorxia/musev:latest
- run docker
docker run --gpus all -it --entrypoint /bin/bash anchorxia/musev:latest
The default conda env is musev
.
Method 2: conda
create conda environment from environment.yaml
conda env create --name musev --file ./environment.yml
Method 3: pip requirements
pip install -r requirements.txt
Prepare mmlab package
if not use docker, should install mmlab package additionally.
pip install --no-cache-dir -U openmim
mim install mmengine
mim install "mmcv>=2.0.1"
mim install "mmdet>=3.1.0"
mim install "mmpose>=1.1.0"
Prepare custom package / modified package
clone
git clone --recursive https://github.com/TMElyralab/MuseV.git
prepare PYTHONPATH
current_dir=$(pwd)
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/MMCM
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/diffusers/src
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/controlnet_aux/src
cd MuseV
MMCM
: multi media, cross modal process package。diffusers
: modified diffusers package based on diffuserscontrolnet_aux
: modified based on controlnet_aux
Download models
git clone https://huggingface.co/TMElyralab/MuseV ./checkpoints
motion
: text2video model, trained on tinyucf101
and tinywebvid
dataset, approximately 60K videos text pairs. GPU memory consumption testing onresolution
$=512*512$,time_size=12
.musev/unet
: only has and trainunet
motion module.GPU memory consumption
$\approx 8G$.musev_referencenet
: trainunet
module,referencenet
,IPAdapter
.GPU memory consumption
$\approx 12G$.unet
:motion
module, which hasto_k
,to_v
inAttention
layer refer toIPAdapter
referencenet
: similar toAnimateAnyone
ip_adapter_image_proj.bin
: images clip emb project layer, refer toIPAdapter
musev_referencenet_pose
: based onmusev_referencenet
, fixreferencenet
andcontrolnet_pose
, trainunet motion
andIPAdapter
.GPU memory consumption
$\approx 12G$
t2i/sd1.5
: text2image model, parameter are frozen when training motion module. Differentt2i
base_model has a significant impact.majicmixRealv6Fp16
: example, could be replaced with other t2i base. download from majicmixRealv6Fp16fantasticmix_v10
: example, could be replaced with other t2i base. download from fantasticmix_v10
IP-Adapter/models
: download from IPAdapterimage_encoder
: vision clip model.ip-adapter_sd15.bin
: original IPAdapter model checkpoint.ip-adapter-faceid_sd15.bin
: original IPAdapter model checkpoint.
Inference
Prepare model_path
Skip this step when run example task with example inference command. Set model path and abbreviation in config, to use abbreviation in inference script.
- T2I SD:ref to
musev/configs/model/T2I_all_model.py
- Motion Unet: refer to
musev/configs/model/motion_model.py
- Task: refer to
musev/configs/tasks/example.yaml
musev_referencenet
text2video
python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --time_size 12 --fps 12
common parameters:
test_data_path
: task_path in yaml extentiontarget_datas
: sep is,
, sample subtasks ifname
intest_data_path
is intarget_datas
.sd_model_cfg_path
: T2I sd models path, model config path or model path.sd_model_name
: sd model name, which use to choose full model path in sd_model_cfg_path. multi model names with sep =,
, orall
unet_model_cfg_path
: motion unet model config path or model path。unet_model_name
: unet model name, use to get model path inunet_model_cfg_path
, and init unet class instance inmusev/models/unet_loader.py
. multi model names with sep=,
, orall
. Ifunet_model_cfg_path
is model path,unet_name
must be supported inmusev/models/unet_loader.py
time_size
: num_frames per diffusion denoise generation。default=12
.n_batch
: generation numbers of shot, $total_frames=n_batch * time_size + n_viscond$, default=1
。context_frames
: context_frames num. Iftime_size
>context_frame
,time_size
window is split into many sub-windows for parallel denoising"。 default=12
。
To generate long videos, there two ways:
visual conditioned parallel denoise
: setn_batch=1
,time_size
= all frames you want.traditional end-to-end
: settime_size
=context_frames
= frames of a shot (12
),context_overlap
= 0;
model parameters:
supports referencenet
, IPAdapter
, IPAdapterFaceID
, Facein
.
- referencenet_model_name:
referencenet
model name. - ImageClipVisionFeatureExtractor:
ImageEmbExtractor
name, extractor vision clip emb used inIPAdapter
. - vision_clip_model_path:
ImageClipVisionFeatureExtractor
model path. - ip_adapter_model_name: from
IPAdapter
, it'sImagePromptEmbProj
, used withImageEmbExtractor
。 - ip_adapter_face_model_name:
IPAdapterFaceID
, fromIPAdapter
to keep faceid,should setface_image_path
。
Some parameters that affect the motion range and generation results:
video_guidance_scale
: Similar to text2image, control influence between cond and uncond,default=3.5
guidance_scale
: The parameter ratio in the first frame image between cond and uncond, default=3.5
use_condition_image
: Whether to use the given first frame for video generation.redraw_condition_image
: Whether to redraw the given first frame image.video_negative_prompt
: Abbreviation of fullnegative_prompt
in config path. default=V2
.
video2video
t2i
base_model has a significant impact. In this case, fantasticmix_v10
performs better than majicmixRealv6Fp16
.
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
import parameters
Most of the parameters are same as musev_text2video
. Special parameters of video2video
are:
- need to set
video_path
intest_data
. Now supportsrgb video
andcontrolnet_middle_video
。
which2video
: whetherrgb
video influences initial noise, more strongly than controlnet condition. IfTrue
, then redraw video.controlnet_name
:whether to usecontrolnet condition
, such asdwpose,depth
.video_is_middle
:video_path
isrgb video
orcontrolnet_middle_video
. Can be set for everytest_data
in test_data_path.video_has_condition
: whether condtion_images is aligned with the first frame of video_path. If Not, firstly generatecondition_images
and then align with concatation. set intest_data
。
all controlnet_names refer to mmcm
['pose', 'pose_body', 'pose_hand', 'pose_face', 'pose_hand_body', 'pose_hand_face', 'dwpose', 'dwpose_face', 'dwpose_hand', 'dwpose_body', 'dwpose_body_hand', 'canny', 'tile', 'hed', 'hed_scribble', 'depth', 'pidi', 'normal_bae', 'lineart', 'lineart_anime', 'zoe', 'sam', 'mobile_sam', 'leres', 'content', 'face_detector']
musev_referencenet_pose
Only used for pose2video
train based on musev_referencenet
, fix referencenet
, pose-controlnet
, and T2I
, train motion
module and IPAdapter
.
t2i
base_model has a significant impact. In this case, fantasticmix_v10
performs better than majicmixRealv6Fp16
.
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev_referencenet_pose --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet_pose -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
musev
Only has motion module, no referencenet, requiring less gpu memory.
text2video
python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --time_size 12 --fps 12
video2video
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
Gradio demo
MuseV provides gradio script to generate a GUI in a local machine to generate video conveniently.
cd scripts/gradio
python app.py
Acknowledgements
- MuseV has referred much to TuneAVideo, diffusers, Moore-AnimateAnyone, animatediff, IP-Adapter, AnimateAnyone, VideoFusion, insightface.
- MuseV has been built on
ucf101
andwebvid
datasets.
Thanks for open-sourcing!
Limitation
There are still many limitations, including
- Lack of generalization ability. Some visual condition image perform well, some perform bad. Some t2i pretraied model perform well, some perform bad.
- Limited types of video generation and limited motion range, partly because of limited types of training data. The released
MuseV
has been trained on approximately 60K human text-video pairs with resolution512*320
.MuseV
has greater motion range while lower video quality at lower resolution.MuseV
tends to generate less motion range with high video quality. Trained on larger, higher resolution, higher quality text-video dataset may makeMuseV
better. - Watermarks may appear because of
webvid
. A cleaner dataset withour watermarks may solve this issue. - Limited types of long video generation. Visual Conditioned Parallel Denoise can solve accumulated error of video generation, but the current method is only suitable for relatively fixed camera scenes.
- Undertrained referencenet and IP-Adapter, beacause of limited time and limited resources.
- Understructured code.
MuseV
supports rich and dynamic features, but with complex and unrefacted codes. It takes time to familiarize.
Citation
@article{musev,
title={MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising},
author={Xia, Zhiqiang and Chen, Zhaokang and Wu, Bin and Li, Chao and Hung, Kwok-Wai and Zhan, Chao and He, Yingjie and Zhou, Wenjiang},
journal={arxiv},
year={2024}
}
Disclaimer/License
code
: The code of MuseV is released under the MIT License. There is no limitation for both academic and commercial usage.model
: The trained model are available for non-commercial research purposes only.other opensource model
: Other open-source models used must comply with their license, such asinsightface
,IP-Adapter
,ft-mse-vae
, etc.- The testdata are collected from internet, which are available for non-commercial research purposes only.
AIGC
: This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.