|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor |
|
from src.models import Wav2Vec2ForSpeechClassification |
|
|
|
import librosa |
|
import IPython.display as ipd |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
|
|
model_name_or_path = "andromeda01111/Malayalam_SA" |
|
config = AutoConfig.from_pretrained(model_name_or_path) |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) |
|
sampling_rate = feature_extractor.sampling_rate |
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path) |
|
|
|
|
|
def speech_file_to_array_fn(path, sampling_rate): |
|
speech_array, _sampling_rate = torchaudio.load(path) |
|
resampler = torchaudio.transforms.Resample(_sampling_rate) |
|
speech = resampler(speech_array).squeeze().numpy() |
|
return speech |
|
|
|
|
|
def predict(path, sampling_rate): |
|
speech = speech_file_to_array_fn(path, sampling_rate) |
|
features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values |
|
attention_mask = features.attention_mask |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
output_emotion = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] |
|
|
|
return output_emotion |
|
|
|
|
|
|
|
def gradio_predict(audio): |
|
predictions = predict(audio) |
|
return [f"{pred['Emotion']}: {pred['Score']}" for pred in predictions] |
|
|
|
|
|
|
|
emotions = [config.id2label[i] for i in range(len(config.id2label))] |
|
outputs = [gr.Textbox(label=emotion, interactive=False) for emotion in emotions] |
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Audio(label="Upload Audio", type="filepath"), |
|
outputs=outputs, |
|
title="Emotion Recognition", |
|
description="Upload an audio file to predict emotions and their corresponding percentages.", |
|
) |
|
|
|
|
|
interface.launch() |
|
|