|
import json
|
|
import os
|
|
from collections import deque
|
|
|
|
from litellm import ModelResponse
|
|
|
|
import openhands
|
|
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
|
|
from openhands.controller.agent import Agent
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import AgentConfig
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.message import ImageContent, Message, TextContent
|
|
from openhands.events.action import (
|
|
Action,
|
|
AgentDelegateAction,
|
|
AgentFinishAction,
|
|
BrowseInteractiveAction,
|
|
BrowseURLAction,
|
|
CmdRunAction,
|
|
FileEditAction,
|
|
FileReadAction,
|
|
IPythonRunCellAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.observation import (
|
|
AgentCondensationObservation,
|
|
AgentDelegateObservation,
|
|
BrowserOutputObservation,
|
|
CmdOutputObservation,
|
|
FileEditObservation,
|
|
FileReadObservation,
|
|
IPythonRunCellObservation,
|
|
UserRejectObservation,
|
|
)
|
|
from openhands.events.observation.error import ErrorObservation
|
|
from openhands.events.observation.observation import Observation
|
|
from openhands.events.serialization.event import truncate_content
|
|
from openhands.llm.llm import LLM
|
|
from openhands.memory.condenser import Condenser
|
|
from openhands.runtime.plugins import (
|
|
AgentSkillsRequirement,
|
|
JupyterRequirement,
|
|
PluginRequirement,
|
|
)
|
|
from openhands.utils.prompt import PromptManager
|
|
|
|
|
|
class CodeActAgent(Agent):
|
|
VERSION = '2.2'
|
|
"""
|
|
The Code Act Agent is a minimalist agent.
|
|
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
|
|
|
|
### Overview
|
|
|
|
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
|
|
|
|
The conceptual idea is illustrated below. At each turn, the agent can:
|
|
|
|
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
|
|
2. **CodeAct**: Choose to perform the task by executing code
|
|
- Execute any valid Linux `bash` command
|
|
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
|
|
|
|
![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
|
|
|
|
"""
|
|
|
|
sandbox_plugins: list[PluginRequirement] = [
|
|
|
|
|
|
|
|
AgentSkillsRequirement(),
|
|
JupyterRequirement(),
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
config: AgentConfig,
|
|
) -> None:
|
|
"""Initializes a new instance of the CodeActAgent class.
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm, config)
|
|
self.pending_actions: deque[Action] = deque()
|
|
self.reset()
|
|
|
|
self.mock_function_calling = False
|
|
if not self.llm.is_function_calling_active():
|
|
logger.info(
|
|
f'Function calling not enabled for model {self.llm.config.model}. '
|
|
'Mocking function calling via prompting.'
|
|
)
|
|
self.mock_function_calling = True
|
|
|
|
|
|
self.tools = codeact_function_calling.get_tools(
|
|
codeact_enable_browsing=self.config.codeact_enable_browsing,
|
|
codeact_enable_jupyter=self.config.codeact_enable_jupyter,
|
|
codeact_enable_llm_editor=self.config.codeact_enable_llm_editor,
|
|
)
|
|
logger.debug(
|
|
f'TOOLS loaded for CodeActAgent: {json.dumps(self.tools, indent=2, ensure_ascii=False).replace("\\n", "\n")}'
|
|
)
|
|
self.prompt_manager = PromptManager(
|
|
microagent_dir=os.path.join(
|
|
os.path.dirname(os.path.dirname(openhands.__file__)),
|
|
'microagents',
|
|
)
|
|
if self.config.enable_prompt_extensions
|
|
else None,
|
|
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
|
|
disabled_microagents=self.config.disabled_microagents,
|
|
)
|
|
|
|
self.condenser = Condenser.from_config(self.config.condenser)
|
|
logger.debug(f'Using condenser: {self.condenser}')
|
|
|
|
def get_action_message(
|
|
self,
|
|
action: Action,
|
|
pending_tool_call_action_messages: dict[str, Message],
|
|
) -> list[Message]:
|
|
"""Converts an action into a message format that can be sent to the LLM.
|
|
|
|
This method handles different types of actions and formats them appropriately:
|
|
1. For tool-based actions (AgentDelegate, CmdRun, IPythonRunCell, FileEdit) and agent-sourced AgentFinish:
|
|
- In function calling mode: Stores the LLM's response in pending_tool_call_action_messages
|
|
- In non-function calling mode: Creates a message with the action string
|
|
2. For MessageActions: Creates a message with the text content and optional image content
|
|
|
|
Args:
|
|
action (Action): The action to convert. Can be one of:
|
|
- CmdRunAction: For executing bash commands
|
|
- IPythonRunCellAction: For running IPython code
|
|
- FileEditAction: For editing files
|
|
- FileReadAction: For reading files using openhands-aci commands
|
|
- BrowseInteractiveAction: For browsing the web
|
|
- AgentFinishAction: For ending the interaction
|
|
- MessageAction: For sending messages
|
|
pending_tool_call_action_messages (dict[str, Message]): Dictionary mapping response IDs
|
|
to their corresponding messages. Used in function calling mode to track tool calls
|
|
that are waiting for their results.
|
|
|
|
Returns:
|
|
list[Message]: A list containing the formatted message(s) for the action.
|
|
May be empty if the action is handled as a tool call in function calling mode.
|
|
|
|
Note:
|
|
In function calling mode, tool-based actions are stored in pending_tool_call_action_messages
|
|
rather than being returned immediately. They will be processed later when all corresponding
|
|
tool call results are available.
|
|
"""
|
|
|
|
if isinstance(
|
|
action,
|
|
(
|
|
AgentDelegateAction,
|
|
IPythonRunCellAction,
|
|
FileEditAction,
|
|
FileReadAction,
|
|
BrowseInteractiveAction,
|
|
BrowseURLAction,
|
|
),
|
|
) or (isinstance(action, CmdRunAction) and action.source == 'agent'):
|
|
tool_metadata = action.tool_call_metadata
|
|
assert tool_metadata is not None, (
|
|
'Tool call metadata should NOT be None when function calling is enabled. Action: '
|
|
+ str(action)
|
|
)
|
|
|
|
llm_response: ModelResponse = tool_metadata.model_response
|
|
assistant_msg = llm_response.choices[0].message
|
|
|
|
|
|
|
|
logger.debug(
|
|
f'Tool calls type: {type(assistant_msg.tool_calls)}, value: {assistant_msg.tool_calls}'
|
|
)
|
|
pending_tool_call_action_messages[llm_response.id] = Message(
|
|
role=assistant_msg.role,
|
|
|
|
content=[TextContent(text=assistant_msg.content or '')]
|
|
if assistant_msg.content is not None
|
|
else [],
|
|
tool_calls=assistant_msg.tool_calls,
|
|
)
|
|
return []
|
|
elif isinstance(action, AgentFinishAction):
|
|
role = 'user' if action.source == 'user' else 'assistant'
|
|
|
|
|
|
|
|
|
|
tool_metadata = action.tool_call_metadata
|
|
if tool_metadata is not None:
|
|
|
|
assistant_msg = tool_metadata.model_response.choices[0].message
|
|
content = assistant_msg.content or ''
|
|
|
|
|
|
if action.thought:
|
|
if action.thought != content:
|
|
action.thought += '\n' + content
|
|
else:
|
|
action.thought = content
|
|
|
|
|
|
action.tool_call_metadata = None
|
|
return [
|
|
Message(
|
|
role=role,
|
|
content=[TextContent(text=action.thought)],
|
|
)
|
|
]
|
|
elif isinstance(action, MessageAction):
|
|
role = 'user' if action.source == 'user' else 'assistant'
|
|
content = [TextContent(text=action.content or '')]
|
|
if self.llm.vision_is_active() and action.image_urls:
|
|
content.append(ImageContent(image_urls=action.image_urls))
|
|
return [
|
|
Message(
|
|
role=role,
|
|
content=content,
|
|
)
|
|
]
|
|
elif isinstance(action, CmdRunAction) and action.source == 'user':
|
|
content = [
|
|
TextContent(text=f'User executed the command:\n{action.command}')
|
|
]
|
|
return [
|
|
Message(
|
|
role='user',
|
|
content=content,
|
|
)
|
|
]
|
|
return []
|
|
|
|
def get_observation_message(
|
|
self,
|
|
obs: Observation,
|
|
tool_call_id_to_message: dict[str, Message],
|
|
) -> list[Message]:
|
|
"""Converts an observation into a message format that can be sent to the LLM.
|
|
|
|
This method handles different types of observations and formats them appropriately:
|
|
- CmdOutputObservation: Formats command execution results with exit codes
|
|
- IPythonRunCellObservation: Formats IPython cell execution results, replacing base64 images
|
|
- FileEditObservation: Formats file editing results
|
|
- FileReadObservation: Formats file reading results from openhands-aci
|
|
- AgentDelegateObservation: Formats results from delegated agent tasks
|
|
- ErrorObservation: Formats error messages from failed actions
|
|
- UserRejectObservation: Formats user rejection messages
|
|
|
|
In function calling mode, observations with tool_call_metadata are stored in
|
|
tool_call_id_to_message for later processing instead of being returned immediately.
|
|
|
|
Args:
|
|
obs (Observation): The observation to convert
|
|
tool_call_id_to_message (dict[str, Message]): Dictionary mapping tool call IDs
|
|
to their corresponding messages (used in function calling mode)
|
|
|
|
Returns:
|
|
list[Message]: A list containing the formatted message(s) for the observation.
|
|
May be empty if the observation is handled as a tool response in function calling mode.
|
|
|
|
Raises:
|
|
ValueError: If the observation type is unknown
|
|
"""
|
|
message: Message
|
|
max_message_chars = self.llm.config.max_message_chars
|
|
if isinstance(obs, CmdOutputObservation):
|
|
|
|
if obs.tool_call_metadata is None:
|
|
text = truncate_content(
|
|
f'\nObserved result of command executed by user:\n{obs.content}',
|
|
max_message_chars,
|
|
)
|
|
else:
|
|
text = truncate_content(
|
|
obs.content
|
|
+ f'\n[Python Interpreter: {obs.metadata.py_interpreter_path}]',
|
|
max_message_chars,
|
|
)
|
|
text += f'\n[Command finished with exit code {obs.exit_code}]'
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, IPythonRunCellObservation):
|
|
text = obs.content
|
|
|
|
splitted = text.split('\n')
|
|
for i, line in enumerate(splitted):
|
|
if '![image](data:image/png;base64,' in line:
|
|
splitted[i] = (
|
|
'![image](data:image/png;base64, ...) already displayed to user'
|
|
)
|
|
text = '\n'.join(splitted)
|
|
text = truncate_content(text, max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, FileEditObservation):
|
|
text = truncate_content(str(obs), max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, FileReadObservation):
|
|
message = Message(
|
|
role='user', content=[TextContent(text=obs.content)]
|
|
)
|
|
elif isinstance(obs, BrowserOutputObservation):
|
|
text = obs.get_agent_obs_text()
|
|
message = Message(
|
|
role='user',
|
|
content=[TextContent(text=text)],
|
|
)
|
|
elif isinstance(obs, AgentDelegateObservation):
|
|
text = truncate_content(
|
|
obs.outputs['content'] if 'content' in obs.outputs else '',
|
|
max_message_chars,
|
|
)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, ErrorObservation):
|
|
text = truncate_content(obs.content, max_message_chars)
|
|
text += '\n[Error occurred in processing last action]'
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, UserRejectObservation):
|
|
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
|
|
text += '\n[Last action has been rejected by the user]'
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, AgentCondensationObservation):
|
|
text = truncate_content(obs.content, max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
else:
|
|
|
|
|
|
raise ValueError(f'Unknown observation type: {type(obs)}')
|
|
|
|
|
|
if (tool_call_metadata := obs.tool_call_metadata) is not None:
|
|
tool_call_id_to_message[tool_call_metadata.tool_call_id] = Message(
|
|
role='tool',
|
|
content=message.content,
|
|
tool_call_id=tool_call_metadata.tool_call_id,
|
|
name=tool_call_metadata.function_name,
|
|
)
|
|
|
|
|
|
|
|
return []
|
|
|
|
return [message]
|
|
|
|
def reset(self) -> None:
|
|
"""Resets the CodeAct Agent."""
|
|
super().reset()
|
|
self.pending_actions.clear()
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""Performs one step using the CodeAct Agent.
|
|
This includes gathering info on previous steps and prompting the model to make a command to execute.
|
|
|
|
Parameters:
|
|
- state (State): used to get updated info
|
|
|
|
Returns:
|
|
- CmdRunAction(command) - bash command to run
|
|
- IPythonRunCellAction(code) - IPython code to run
|
|
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
|
|
- MessageAction(content) - Message action to run (e.g. ask for clarification)
|
|
- AgentFinishAction() - end the interaction
|
|
"""
|
|
|
|
if self.pending_actions:
|
|
return self.pending_actions.popleft()
|
|
|
|
|
|
latest_user_message = state.get_last_user_message()
|
|
if latest_user_message and latest_user_message.content.strip() == '/exit':
|
|
return AgentFinishAction()
|
|
|
|
|
|
messages = self._get_messages(state)
|
|
params: dict = {
|
|
'messages': self.llm.format_messages_for_llm(messages),
|
|
}
|
|
params['tools'] = self.tools
|
|
if self.mock_function_calling:
|
|
params['mock_function_calling'] = True
|
|
response = self.llm.completion(**params)
|
|
actions = codeact_function_calling.response_to_actions(response)
|
|
for action in actions:
|
|
self.pending_actions.append(action)
|
|
return self.pending_actions.popleft()
|
|
|
|
def _get_messages(self, state: State) -> list[Message]:
|
|
"""Constructs the message history for the LLM conversation.
|
|
|
|
This method builds a structured conversation history by processing events from the state
|
|
and formatting them into messages that the LLM can understand. It handles both regular
|
|
message flow and function-calling scenarios.
|
|
|
|
The method performs the following steps:
|
|
1. Initializes with system prompt and optional initial user message
|
|
2. Processes events (Actions and Observations) into messages
|
|
3. Handles tool calls and their responses in function-calling mode
|
|
4. Manages message role alternation (user/assistant/tool)
|
|
5. Applies caching for specific LLM providers (e.g., Anthropic)
|
|
6. Adds environment reminders for non-function-calling mode
|
|
|
|
Args:
|
|
state (State): The current state object containing conversation history and other metadata
|
|
|
|
Returns:
|
|
list[Message]: A list of formatted messages ready for LLM consumption, including:
|
|
- System message with prompt
|
|
- Initial user message (if configured)
|
|
- Action messages (from both user and assistant)
|
|
- Observation messages (including tool responses)
|
|
- Environment reminders (in non-function-calling mode)
|
|
|
|
Note:
|
|
- In function-calling mode, tool calls and their responses are carefully tracked
|
|
to maintain proper conversation flow
|
|
- Messages from the same role are combined to prevent consecutive same-role messages
|
|
- For Anthropic models, specific messages are cached according to their documentation
|
|
"""
|
|
if not self.prompt_manager:
|
|
raise Exception('Prompt Manager not instantiated.')
|
|
|
|
messages: list[Message] = [
|
|
Message(
|
|
role='system',
|
|
content=[
|
|
TextContent(
|
|
text=self.prompt_manager.get_system_message(),
|
|
cache_prompt=self.llm.is_caching_prompt_active(),
|
|
)
|
|
],
|
|
)
|
|
]
|
|
example_message = self.prompt_manager.get_example_user_message()
|
|
if example_message:
|
|
messages.append(
|
|
Message(
|
|
role='user',
|
|
content=[TextContent(text=example_message)],
|
|
cache_prompt=self.llm.is_caching_prompt_active(),
|
|
)
|
|
)
|
|
|
|
|
|
additional_info = self.prompt_manager.get_additional_info()
|
|
if self.config.enable_prompt_extensions and additional_info:
|
|
|
|
messages.append(
|
|
Message(
|
|
role='user',
|
|
content=[TextContent(text=additional_info)],
|
|
)
|
|
)
|
|
|
|
pending_tool_call_action_messages: dict[str, Message] = {}
|
|
tool_call_id_to_message: dict[str, Message] = {}
|
|
|
|
|
|
events = self.condenser.condensed_history(state)
|
|
|
|
for event in events:
|
|
|
|
if isinstance(event, Action):
|
|
messages_to_add = self.get_action_message(
|
|
action=event,
|
|
pending_tool_call_action_messages=pending_tool_call_action_messages,
|
|
)
|
|
elif isinstance(event, Observation):
|
|
messages_to_add = self.get_observation_message(
|
|
obs=event,
|
|
tool_call_id_to_message=tool_call_id_to_message,
|
|
)
|
|
else:
|
|
raise ValueError(f'Unknown event type: {type(event)}')
|
|
|
|
|
|
_response_ids_to_remove = []
|
|
for (
|
|
response_id,
|
|
pending_message,
|
|
) in pending_tool_call_action_messages.items():
|
|
assert pending_message.tool_calls is not None, (
|
|
'Tool calls should NOT be None when function calling is enabled & the message is considered pending tool call. '
|
|
f'Pending message: {pending_message}'
|
|
)
|
|
if all(
|
|
tool_call.id in tool_call_id_to_message
|
|
for tool_call in pending_message.tool_calls
|
|
):
|
|
|
|
|
|
messages_to_add.append(pending_message)
|
|
|
|
for tool_call in pending_message.tool_calls:
|
|
messages_to_add.append(tool_call_id_to_message[tool_call.id])
|
|
tool_call_id_to_message.pop(tool_call.id)
|
|
_response_ids_to_remove.append(response_id)
|
|
|
|
for response_id in _response_ids_to_remove:
|
|
pending_tool_call_action_messages.pop(response_id)
|
|
|
|
for message in messages_to_add:
|
|
if message:
|
|
if message.role == 'user':
|
|
self.prompt_manager.enhance_message(message)
|
|
messages.append(message)
|
|
|
|
if self.llm.is_caching_prompt_active():
|
|
|
|
|
|
|
|
breakpoints_remaining = 3
|
|
for message in reversed(messages):
|
|
if message.role == 'user' or message.role == 'tool':
|
|
if breakpoints_remaining > 0:
|
|
message.content[
|
|
-1
|
|
].cache_prompt = True
|
|
breakpoints_remaining -= 1
|
|
else:
|
|
break
|
|
|
|
return messages
|
|
|