ar08's picture
Upload 1040 files
246d201 verified
import json
import os
from collections import deque
from litellm import ModelResponse
import openhands
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
from openhands.controller.agent import Agent
from openhands.controller.state.state import State
from openhands.core.config import AgentConfig
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import ImageContent, Message, TextContent
from openhands.events.action import (
Action,
AgentDelegateAction,
AgentFinishAction,
BrowseInteractiveAction,
BrowseURLAction,
CmdRunAction,
FileEditAction,
FileReadAction,
IPythonRunCellAction,
MessageAction,
)
from openhands.events.observation import (
AgentCondensationObservation,
AgentDelegateObservation,
BrowserOutputObservation,
CmdOutputObservation,
FileEditObservation,
FileReadObservation,
IPythonRunCellObservation,
UserRejectObservation,
)
from openhands.events.observation.error import ErrorObservation
from openhands.events.observation.observation import Observation
from openhands.events.serialization.event import truncate_content
from openhands.llm.llm import LLM
from openhands.memory.condenser import Condenser
from openhands.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
from openhands.utils.prompt import PromptManager
class CodeActAgent(Agent):
VERSION = '2.2'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions,
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
def __init__(
self,
llm: LLM,
config: AgentConfig,
) -> None:
"""Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm, config)
self.pending_actions: deque[Action] = deque()
self.reset()
self.mock_function_calling = False
if not self.llm.is_function_calling_active():
logger.info(
f'Function calling not enabled for model {self.llm.config.model}. '
'Mocking function calling via prompting.'
)
self.mock_function_calling = True
# Function calling mode
self.tools = codeact_function_calling.get_tools(
codeact_enable_browsing=self.config.codeact_enable_browsing,
codeact_enable_jupyter=self.config.codeact_enable_jupyter,
codeact_enable_llm_editor=self.config.codeact_enable_llm_editor,
)
logger.debug(
f'TOOLS loaded for CodeActAgent: {json.dumps(self.tools, indent=2, ensure_ascii=False).replace("\\n", "\n")}'
)
self.prompt_manager = PromptManager(
microagent_dir=os.path.join(
os.path.dirname(os.path.dirname(openhands.__file__)),
'microagents',
)
if self.config.enable_prompt_extensions
else None,
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
disabled_microagents=self.config.disabled_microagents,
)
self.condenser = Condenser.from_config(self.config.condenser)
logger.debug(f'Using condenser: {self.condenser}')
def get_action_message(
self,
action: Action,
pending_tool_call_action_messages: dict[str, Message],
) -> list[Message]:
"""Converts an action into a message format that can be sent to the LLM.
This method handles different types of actions and formats them appropriately:
1. For tool-based actions (AgentDelegate, CmdRun, IPythonRunCell, FileEdit) and agent-sourced AgentFinish:
- In function calling mode: Stores the LLM's response in pending_tool_call_action_messages
- In non-function calling mode: Creates a message with the action string
2. For MessageActions: Creates a message with the text content and optional image content
Args:
action (Action): The action to convert. Can be one of:
- CmdRunAction: For executing bash commands
- IPythonRunCellAction: For running IPython code
- FileEditAction: For editing files
- FileReadAction: For reading files using openhands-aci commands
- BrowseInteractiveAction: For browsing the web
- AgentFinishAction: For ending the interaction
- MessageAction: For sending messages
pending_tool_call_action_messages (dict[str, Message]): Dictionary mapping response IDs
to their corresponding messages. Used in function calling mode to track tool calls
that are waiting for their results.
Returns:
list[Message]: A list containing the formatted message(s) for the action.
May be empty if the action is handled as a tool call in function calling mode.
Note:
In function calling mode, tool-based actions are stored in pending_tool_call_action_messages
rather than being returned immediately. They will be processed later when all corresponding
tool call results are available.
"""
# create a regular message from an event
if isinstance(
action,
(
AgentDelegateAction,
IPythonRunCellAction,
FileEditAction,
FileReadAction,
BrowseInteractiveAction,
BrowseURLAction,
),
) or (isinstance(action, CmdRunAction) and action.source == 'agent'):
tool_metadata = action.tool_call_metadata
assert tool_metadata is not None, (
'Tool call metadata should NOT be None when function calling is enabled. Action: '
+ str(action)
)
llm_response: ModelResponse = tool_metadata.model_response
assistant_msg = llm_response.choices[0].message
# Add the LLM message (assistant) that initiated the tool calls
# (overwrites any previous message with the same response_id)
logger.debug(
f'Tool calls type: {type(assistant_msg.tool_calls)}, value: {assistant_msg.tool_calls}'
)
pending_tool_call_action_messages[llm_response.id] = Message(
role=assistant_msg.role,
# tool call content SHOULD BE a string
content=[TextContent(text=assistant_msg.content or '')]
if assistant_msg.content is not None
else [],
tool_calls=assistant_msg.tool_calls,
)
return []
elif isinstance(action, AgentFinishAction):
role = 'user' if action.source == 'user' else 'assistant'
# when agent finishes, it has tool_metadata
# which has already been executed, and it doesn't have a response
# when the user finishes (/exit), we don't have tool_metadata
tool_metadata = action.tool_call_metadata
if tool_metadata is not None:
# take the response message from the tool call
assistant_msg = tool_metadata.model_response.choices[0].message
content = assistant_msg.content or ''
# save content if any, to thought
if action.thought:
if action.thought != content:
action.thought += '\n' + content
else:
action.thought = content
# remove the tool call metadata
action.tool_call_metadata = None
return [
Message(
role=role,
content=[TextContent(text=action.thought)],
)
]
elif isinstance(action, MessageAction):
role = 'user' if action.source == 'user' else 'assistant'
content = [TextContent(text=action.content or '')]
if self.llm.vision_is_active() and action.image_urls:
content.append(ImageContent(image_urls=action.image_urls))
return [
Message(
role=role,
content=content,
)
]
elif isinstance(action, CmdRunAction) and action.source == 'user':
content = [
TextContent(text=f'User executed the command:\n{action.command}')
]
return [
Message(
role='user',
content=content,
)
]
return []
def get_observation_message(
self,
obs: Observation,
tool_call_id_to_message: dict[str, Message],
) -> list[Message]:
"""Converts an observation into a message format that can be sent to the LLM.
This method handles different types of observations and formats them appropriately:
- CmdOutputObservation: Formats command execution results with exit codes
- IPythonRunCellObservation: Formats IPython cell execution results, replacing base64 images
- FileEditObservation: Formats file editing results
- FileReadObservation: Formats file reading results from openhands-aci
- AgentDelegateObservation: Formats results from delegated agent tasks
- ErrorObservation: Formats error messages from failed actions
- UserRejectObservation: Formats user rejection messages
In function calling mode, observations with tool_call_metadata are stored in
tool_call_id_to_message for later processing instead of being returned immediately.
Args:
obs (Observation): The observation to convert
tool_call_id_to_message (dict[str, Message]): Dictionary mapping tool call IDs
to their corresponding messages (used in function calling mode)
Returns:
list[Message]: A list containing the formatted message(s) for the observation.
May be empty if the observation is handled as a tool response in function calling mode.
Raises:
ValueError: If the observation type is unknown
"""
message: Message
max_message_chars = self.llm.config.max_message_chars
if isinstance(obs, CmdOutputObservation):
# if it doesn't have tool call metadata, it was triggered by a user action
if obs.tool_call_metadata is None:
text = truncate_content(
f'\nObserved result of command executed by user:\n{obs.content}',
max_message_chars,
)
else:
text = truncate_content(
obs.content
+ f'\n[Python Interpreter: {obs.metadata.py_interpreter_path}]',
max_message_chars,
)
text += f'\n[Command finished with exit code {obs.exit_code}]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, IPythonRunCellObservation):
text = obs.content
# replace base64 images with a placeholder
splitted = text.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
text = '\n'.join(splitted)
text = truncate_content(text, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileEditObservation):
text = truncate_content(str(obs), max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileReadObservation):
message = Message(
role='user', content=[TextContent(text=obs.content)]
) # Content is already truncated by openhands-aci
elif isinstance(obs, BrowserOutputObservation):
text = obs.get_agent_obs_text()
message = Message(
role='user',
content=[TextContent(text=text)],
)
elif isinstance(obs, AgentDelegateObservation):
text = truncate_content(
obs.outputs['content'] if 'content' in obs.outputs else '',
max_message_chars,
)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, ErrorObservation):
text = truncate_content(obs.content, max_message_chars)
text += '\n[Error occurred in processing last action]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, UserRejectObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += '\n[Last action has been rejected by the user]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentCondensationObservation):
text = truncate_content(obs.content, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
else:
# If an observation message is not returned, it will cause an error
# when the LLM tries to return the next message
raise ValueError(f'Unknown observation type: {type(obs)}')
# Update the message as tool response properly
if (tool_call_metadata := obs.tool_call_metadata) is not None:
tool_call_id_to_message[tool_call_metadata.tool_call_id] = Message(
role='tool',
content=message.content,
tool_call_id=tool_call_metadata.tool_call_id,
name=tool_call_metadata.function_name,
)
# No need to return the observation message
# because it will be added by get_action_message when all the corresponding
# tool calls in the SAME request are processed
return []
return [message]
def reset(self) -> None:
"""Resets the CodeAct Agent."""
super().reset()
self.pending_actions.clear()
def step(self, state: State) -> Action:
"""Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
# Continue with pending actions if any
if self.pending_actions:
return self.pending_actions.popleft()
# if we're done, go back
latest_user_message = state.get_last_user_message()
if latest_user_message and latest_user_message.content.strip() == '/exit':
return AgentFinishAction()
# prepare what we want to send to the LLM
messages = self._get_messages(state)
params: dict = {
'messages': self.llm.format_messages_for_llm(messages),
}
params['tools'] = self.tools
if self.mock_function_calling:
params['mock_function_calling'] = True
response = self.llm.completion(**params)
actions = codeact_function_calling.response_to_actions(response)
for action in actions:
self.pending_actions.append(action)
return self.pending_actions.popleft()
def _get_messages(self, state: State) -> list[Message]:
"""Constructs the message history for the LLM conversation.
This method builds a structured conversation history by processing events from the state
and formatting them into messages that the LLM can understand. It handles both regular
message flow and function-calling scenarios.
The method performs the following steps:
1. Initializes with system prompt and optional initial user message
2. Processes events (Actions and Observations) into messages
3. Handles tool calls and their responses in function-calling mode
4. Manages message role alternation (user/assistant/tool)
5. Applies caching for specific LLM providers (e.g., Anthropic)
6. Adds environment reminders for non-function-calling mode
Args:
state (State): The current state object containing conversation history and other metadata
Returns:
list[Message]: A list of formatted messages ready for LLM consumption, including:
- System message with prompt
- Initial user message (if configured)
- Action messages (from both user and assistant)
- Observation messages (including tool responses)
- Environment reminders (in non-function-calling mode)
Note:
- In function-calling mode, tool calls and their responses are carefully tracked
to maintain proper conversation flow
- Messages from the same role are combined to prevent consecutive same-role messages
- For Anthropic models, specific messages are cached according to their documentation
"""
if not self.prompt_manager:
raise Exception('Prompt Manager not instantiated.')
messages: list[Message] = [
Message(
role='system',
content=[
TextContent(
text=self.prompt_manager.get_system_message(),
cache_prompt=self.llm.is_caching_prompt_active(),
)
],
)
]
example_message = self.prompt_manager.get_example_user_message()
if example_message:
messages.append(
Message(
role='user',
content=[TextContent(text=example_message)],
cache_prompt=self.llm.is_caching_prompt_active(),
)
)
# Repository and runtime info
additional_info = self.prompt_manager.get_additional_info()
if self.config.enable_prompt_extensions and additional_info:
# only add these if prompt extension is enabled
messages.append(
Message(
role='user',
content=[TextContent(text=additional_info)],
)
)
pending_tool_call_action_messages: dict[str, Message] = {}
tool_call_id_to_message: dict[str, Message] = {}
# Condense the events from the state.
events = self.condenser.condensed_history(state)
for event in events:
# create a regular message from an event
if isinstance(event, Action):
messages_to_add = self.get_action_message(
action=event,
pending_tool_call_action_messages=pending_tool_call_action_messages,
)
elif isinstance(event, Observation):
messages_to_add = self.get_observation_message(
obs=event,
tool_call_id_to_message=tool_call_id_to_message,
)
else:
raise ValueError(f'Unknown event type: {type(event)}')
# Check pending tool call action messages and see if they are complete
_response_ids_to_remove = []
for (
response_id,
pending_message,
) in pending_tool_call_action_messages.items():
assert pending_message.tool_calls is not None, (
'Tool calls should NOT be None when function calling is enabled & the message is considered pending tool call. '
f'Pending message: {pending_message}'
)
if all(
tool_call.id in tool_call_id_to_message
for tool_call in pending_message.tool_calls
):
# If complete:
# -- 1. Add the message that **initiated** the tool calls
messages_to_add.append(pending_message)
# -- 2. Add the tool calls **results***
for tool_call in pending_message.tool_calls:
messages_to_add.append(tool_call_id_to_message[tool_call.id])
tool_call_id_to_message.pop(tool_call.id)
_response_ids_to_remove.append(response_id)
# Cleanup the processed pending tool messages
for response_id in _response_ids_to_remove:
pending_tool_call_action_messages.pop(response_id)
for message in messages_to_add:
if message:
if message.role == 'user':
self.prompt_manager.enhance_message(message)
messages.append(message)
if self.llm.is_caching_prompt_active():
# NOTE: this is only needed for anthropic
# following logic here:
# https://github.com/anthropics/anthropic-quickstarts/blob/8f734fd08c425c6ec91ddd613af04ff87d70c5a0/computer-use-demo/computer_use_demo/loop.py#L241-L262
breakpoints_remaining = 3 # remaining 1 for system/tool
for message in reversed(messages):
if message.role == 'user' or message.role == 'tool':
if breakpoints_remaining > 0:
message.content[
-1
].cache_prompt = True # Last item inside the message content
breakpoints_remaining -= 1
else:
break
return messages