summarizer / app.py
arithescientist's picture
Update app.py
6ebd1a5
raw
history blame
1.25 kB
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
from transformers import AutoTokenizer, AutoModelForPreTraining
# model_name = 'distilbert-base-uncased'
model_name = 'nlpaueb/legal-bert-base-uncased'
#model_name = 'laxya007/gpt2_legal'
# model_name = 'facebook/bart-large-cnn'
# The setup of huggingface.co
custom_config = AutoConfig.from_pretrained(model_name)
custom_config.output_hidden_states=True
custom_tokenizer = AutoTokenizer.from_pretrained(model_name)
custom_model = AutoModel.from_pretrained(model_name, config=custom_config)
bert_legal_model = Summarizer(custom_model=custom_model, custom_tokenizer=custom_tokenizer)
print('Using model {}\n'.format(model_name))
def get_response(input_text):
output_text= bert_legal_model(input_text, min_length = 8, ratio = 0.05)
return output_text
iface = gr.Interface(
get_response,
"text",
"text"
)
if __name__ == "__main__":
iface.launch(share=False)