Spaces:
Running
Running
File size: 9,058 Bytes
e59b179 d3ba134 e59b179 d3ba134 e59b179 d3ba134 e59b179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import streamlit as st
from pybitget import Client
import datetime
import pandas as pd
from utils.preprocess.preprocess_data import (
preprocess,
normalize,
split_train_test,
create_dataset,
build_model,
train_model,
)
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from sklearn.metrics import (
r2_score,
)
from utils.preprocess.projections import project
import numpy as np
client = Client(
st.secrets["apikey"],
st.secrets["password"],
passphrase=st.secrets["passphrase"],
)
from itertools import cycle
import plotly.express as px
from sklearn.model_selection import train_test_split
def get_symbols():
data = client.spot_get_symbols()
return [x["symbol"] for x in data["data"]]
def get_data(symbol, period, after, before):
print(symbol, period, after, end)
data = client.spot_get_candle_data(
symbol=symbol,
period=period,
after=after,
before=before,
limit=1000,
)["data"]
return pd.DataFrame(data)
st.set_page_config(page_title="Keras Bitget predictions", page_icon="📈", layout="wide")
st.title("Crypto price prediction")
coin = st.selectbox("Select your symbol", options=get_symbols())
period = st.selectbox(
"Select the interval",
options=[
"1min",
"5min",
"15min",
"30min",
"1h",
"4h",
"6h",
"12h",
"1day",
"1week",
],
)
default_time = datetime.time(13, 0)
start = st.date_input(
"Start date of the data",
# value=datetime.datetime.now().date() - datetime.timedelta(days=30),
value=datetime.date(year=2022, month=1, day=1),
max_value=datetime.datetime.now().date(),
)
# start = datetime.datetime.timestamp(start)
end = st.date_input(
"End date of the data",
value=datetime.datetime.now().date(),
max_value=datetime.datetime.now().date(),
)
days = st.slider(label="Days to project", min_value=1, max_value=30, step=1, value=20)
epochs = st.slider(
label="Training Epochs", min_value=10, max_value=200, step=20, value=20
)
# end = datetime.datetime.timestamp(end)
# end = st.date_input("Start date of the data", datetime.now().date())
if st.button("Start"):
data = get_data(
coin,
period,
after=str(
int(
datetime.datetime.timestamp(
datetime.datetime.combine(start, default_time)
)
)
* 1000
),
before=str(
int(
datetime.datetime.timestamp(
datetime.datetime.combine(end, default_time)
)
)
* 1000
),
)
closedf = preprocess(data)
names = cycle(
["Stock Open Price", "Stock Close Price", "Stock High Price", "Stock Low Price"]
)
figp = px.line(
closedf,
x=closedf.Date,
y=[closedf["open"], closedf["close"], closedf["high"], closedf["low"]],
labels={"Date": "Date", "value": "Stock value"},
)
figp.update_layout(
title_text="Stock analysis chart",
font_size=15,
font_color="black",
legend_title_text="Stock Parameters",
)
figp.for_each_trace(lambda t: t.update(name=next(names)))
figp.update_xaxes(showgrid=False)
figp.update_yaxes(showgrid=False)
st.plotly_chart(figp, use_container_width=True)
close_stock = closedf.copy()
close_stock = close_stock[["Date", "close"]]
# st.write(closedf.shape)
close_stock_train, close_stock_test = train_test_split(close_stock, train_size=0.60)
# st.write(close_stock_train.shape)
closedfsc, scaler = normalize(closedf=closedf)
training_size = int(len(closedf) * 0.60)
test_size = len(closedf) - training_size
train_set, test_set = split_train_test(
closedfsc=closedfsc, training_size=training_size, test_size=test_size
)
# st.write(train_set.shape)
time_step = int(days/2)
X_train, y_train = create_dataset(train_set, time_step)
X_test, y_test = create_dataset(test_set, time_step)
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
model = build_model()
st.write("Epoch Progress:")
progress_bar = st.progress(0)
def update_progress(epoch, history):
progress_percent = (epoch + 1) / epochs * 100
progress_bar.progress(progress_percent / 100) # Normalize to [0.0, 1.0]
# emp.write(
# f"Epoch {epoch + 1}/{epochs} - Loss: {history.history['loss'][0]} - Val Loss: {history.history['val_loss'][0]}"
# )
trained_model, train_losses, val_loss = train_model(
model,
X_train,
y_train,
X_test,
y_test,
epochs,
progress_callback=update_progress,
)
st.write("Training Completed!")
epochs = [i for i in range(len(train_losses))]
trace_train = go.Scatter(
x=epochs,
y=train_losses,
mode="lines",
name="Training Loss",
line=dict(color="red"),
)
# Create a trace for validation loss
trace_val = go.Scatter(
x=epochs,
y=val_loss,
mode="lines",
name="Validation Loss",
line=dict(color="blue"),
)
# Create the layout for the plot
layout = go.Layout(
title="Training and Validation Loss",
xaxis=dict(title="Epochs"),
yaxis=dict(title="Loss"),
)
# Create the figure
fig = go.Figure(data=[trace_train, trace_val], layout=layout)
# Show the plot
st.plotly_chart(fig, use_container_width=True)
train_predict = trained_model.predict(X_train)
test_predict = trained_model.predict(X_test)
train_predict = scaler.inverse_transform(train_predict)
test_predict = scaler.inverse_transform(test_predict)
original_ytrain = scaler.inverse_transform(y_train.reshape(-1, 1))
original_ytest = scaler.inverse_transform(y_test.reshape(-1, 1))
st.write(
"Train data Accuracy score:",
r2_score(original_ytrain, train_predict),
)
st.write(
"Test data Accuracy score:",
r2_score(original_ytest, test_predict),
)
plt.figure(figsize=(16, 10))
plt.plot(original_ytest)
plt.plot(test_predict)
plt.ylabel("Price")
plt.title(coin + " Single Point Price Prediction")
plt.legend(["Actual", "Predicted"])
plt.xticks(color="w")
st.pyplot(plt.gcf(), use_container_width=True)
projected_data = project(
time_step=15, test_data=test_set, model=trained_model, days=days
)
last_days = np.arange(1, time_step + 1)
day_pred = np.arange(time_step + 1, time_step + days + 1)
temp_mat = np.empty((len(last_days) + days + 1, 1))
temp_mat[:] = np.nan
temp_mat = temp_mat.reshape(1, -1).tolist()[0]
last_original_days_value = temp_mat
next_predicted_days_value = temp_mat
last_original_days_value[0 : time_step + 1] = (
scaler.inverse_transform(
close_stock[len(close_stock.close) - time_step :].close.values.reshape(
-1, 1
)
)
.reshape(1, -1)
.tolist()[0]
)
next_predicted_days_value[time_step + 1 :] = (
scaler.inverse_transform(np.array(projected_data).reshape(-1, 1))
.reshape(1, -1)
.tolist()[0]
)
new_pred_plot = pd.DataFrame(
{
"last_original_days_value": last_original_days_value,
"next_predicted_days_value": next_predicted_days_value,
}
)
names = cycle(["Last 15 days close price", "Predicted next 30 days close price"])
fig = px.line(
new_pred_plot,
x=new_pred_plot.index,
y=[
new_pred_plot["last_original_days_value"],
new_pred_plot["next_predicted_days_value"],
],
labels={"value": "Stock price", "index": "Timestamp"},
)
fig.update_layout(
title_text="Compare last 15 days vs next 30 days",
plot_bgcolor="white",
font_size=15,
font_color="black",
legend_title_text="Close Price",
)
fig.for_each_trace(lambda t: t.update(name=next(names)))
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
st.plotly_chart(fig, use_container_width=True)
lstmdf = closedfsc.tolist()
lstmdf.extend((np.array(projected_data).reshape(-1, 1)).tolist())
lstmdf = scaler.inverse_transform(lstmdf).reshape(1, -1).tolist()[0]
names = cycle(["Close price"])
fig = px.line(lstmdf, labels={"value": "Stock price", "index": "Timestamp"})
fig.update_layout(
title_text="Plotting whole closing stock price with prediction",
plot_bgcolor="white",
font_size=15,
font_color="black",
legend_title_text="Stock",
)
fig.for_each_trace(lambda t: t.update(name=next(names)))
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
st.plotly_chart(fig, use_container_width=True)
|