File size: 10,551 Bytes
e53f2d3
 
 
18156fb
e53f2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/env python
# encoding: utf-8


import gradio as gr
from PIL import Image
import traceback
import re
import torch
import argparse
from transformers import AutoModel, AutoTokenizer

# Suppress FutureWarnings
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

# README, How to run demo on different devices
# For CPU usage, you can simply run:
# python app.py

# Argparser
parser = argparse.ArgumentParser(description='Demo Application Configuration')
parser.add_argument('--device', type=str, default='cpu', choices=['cpu'], help='Device to run the model on. Currently only "cpu" is supported.')
parser.add_argument('--dtype', type=str, default='fp32', choices=['fp32'], help='Data type for model computations. "fp32" is standard for CPU.')
args = parser.parse_args()

device = args.device

# Since we're using CPU, set dtype to float32
if args.dtype == 'fp32':
    dtype = torch.float32
else:
    dtype = torch.float32  # Fallback to float32 if an unsupported dtype is somehow passed

# Load model
model_path = 'openbmb/MiniCPM-V-2'

try:
    print("Loading model...")
    model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(device=device, dtype=dtype)
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    print("Model loaded successfully.")
except Exception as e:
    print(f"Error loading model: {e}")
    traceback.print_exc()
    exit(1)

model.eval()

ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.0'

# Define UI components parameters
form_radio = {
    'choices': ['Beam Search', 'Sampling'],
    'value': 'Sampling',
    'interactive': True,
    'label': 'Decode Type'
}

# Beam Search Parameters
num_beams_slider = {
    'minimum': 1,  # Changed minimum from 0 to 1 as 0 beams doesn't make sense
    'maximum': 10,  # Increased maximum for more flexibility
    'value': 3,
    'step': 1,
    'interactive': True,
    'label': 'Num Beams'
}
repetition_penalty_slider = {
    'minimum': 0.5,  # Changed minimum to a reasonable value
    'maximum': 3.0,
    'value': 1.2,
    'step': 0.01,
    'interactive': True,
    'label': 'Repetition Penalty'
}

# Sampling Parameters
repetition_penalty_slider2 = {
    'minimum': 0.5,
    'maximum': 3.0,
    'value': 1.05,
    'step': 0.01,
    'interactive': True,
    'label': 'Repetition Penalty'
}
max_new_tokens_slider = {
    'minimum': 1,
    'maximum': 4096,
    'value': 1024,
    'step': 1,
    'interactive': True,
    'label': 'Max New Tokens'
}

top_p_slider = {
    'minimum': 0.1,  # Avoid extreme low values
    'maximum': 1.0,
    'value': 0.8,
    'step': 0.05,
    'interactive': True,
    'label': 'Top P'
}
top_k_slider = {
    'minimum': 10,  # Avoid extreme low values
    'maximum': 200,
    'value': 100,
    'step': 1,
    'interactive': True,
    'label': 'Top K'
}
temperature_slider = {
    'minimum': 0.1,  # Avoid extreme low values
    'maximum': 2.0,
    'value': 0.7,
    'step': 0.05,
    'interactive': True,
    'label': 'Temperature'
}

def create_component(params, comp='Slider'):
    """
    Utility function to create Gradio UI components based on parameters.
    """
    if comp == 'Slider':
        return gr.Slider(
            minimum=params['minimum'],
            maximum=params['maximum'],
            value=params['value'],
            step=params['step'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Radio':
        return gr.Radio(
            choices=params['choices'],
            value=params['value'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Button':
        return gr.Button(
            value=params['value'],
            interactive=True
        )

def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
    """
    Function to handle the chat interaction.
    """
    print("Entering chat function...")
    default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
    if params is None:
        params = default_params
    if img is None:
        return -1, "Error, invalid image, please upload a new image", None, None
    try:
        image = img.convert('RGB')
        answer, context, _ = model.chat(
            image=image,
            msgs=msgs,
            context=None,
            tokenizer=tokenizer,
            **params
        )
        # Clean up the answer text
        res = re.sub(r'(<box>.*</box>)', '', answer)
        res = res.replace('<ref>', '').replace('</ref>', '').replace('<box>', '').replace('</box>', '')
        answer = res
        return -1, answer, None, None
    except Exception as err:
        print(err)
        traceback.print_exc()
        return -1, ERROR_MSG, None, None

def upload_img(image, _chatbot, _app_session):
    """
    Function to handle image uploads.
    """
    print("Uploading image...")
    try:
        image = Image.fromarray(image)
        _app_session['sts'] = None
        _app_session['ctx'] = []
        _app_session['img'] = image
        _chatbot.append(('', 'Image uploaded successfully, I am ready to take up your queries'))
        print("Image uploaded successfully.")
        return _chatbot, _app_session
    except Exception as e:
        print(f"Error uploading image: {e}")
        traceback.print_exc()
        return _chatbot, _app_session

def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
    """
    Function to handle user input and generate responses.
    """
    print("Respond function called.")
    if _app_cfg.get('ctx', None) is None:
        _chat_bot.append((_question, 'Please upload an image to detect'))
        return '', _chat_bot, _app_cfg

    _context = _app_cfg['ctx'].copy()
    if _context:
        _context.append({"role": "user", "content": _question})
    else:
        _context = [{"role": "user", "content": _question}]
    print('<User>:', _question)

    if params_form == 'Beam Search':
        params = {
            'sampling': False,
            'num_beams': num_beams,
            'repetition_penalty': repetition_penalty,
            "max_new_tokens": 896 
        }
    else:
        params = {
            'sampling': True,
            'top_p': top_p,
            'top_k': top_k,
            'temperature': temperature,
            'repetition_penalty': repetition_penalty_2,
            "max_new_tokens": 896 
        }
    code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
    print('<Assistant>:', _answer)

    _context.append({"role": "assistant", "content": _answer}) 
    _chat_bot.append((_question, _answer))
    if code == 0:
        _app_cfg['ctx'] = _context
        _app_cfg['sts'] = sts
    return '', _chat_bot, _app_cfg

def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
    """
    Function to handle the regeneration of the last assistant response.
    """
    print("Regenerate button clicked.")
    if len(_chat_bot) <= 1:
        _chat_bot.append(('Regenerate', 'No question for regeneration.'))
        return '', _chat_bot, _app_cfg
    elif _chat_bot[-1][0] == 'Regenerate':
        return '', _chat_bot, _app_cfg
    else:
        _question = _chat_bot[-1][0]
        _chat_bot = _chat_bot[:-1]
        _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
    return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)

# Building the Gradio Interface
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            # Decode Type Selection
            params_form = create_component(form_radio, comp='Radio')
            
            # Beam Search Settings
            with gr.Accordion("Beam Search"):
                num_beams = create_component(num_beams_slider)
                repetition_penalty = create_component(repetition_penalty_slider)
            
            # Sampling Settings
            with gr.Accordion("Sampling"):
                top_p = create_component(top_p_slider)
                top_k = create_component(top_k_slider)
                temperature = create_component(temperature_slider)
                repetition_penalty_2 = create_component(repetition_penalty_slider2)
            
            # Regenerate Button
            regenerate = create_component({'value': 'Regenerate'}, comp='Button')
        
        with gr.Column(scale=3, min_width=500):
            # Application State
            app_session = gr.State({'sts': None, 'ctx': None, 'img': None})
            
            # Image Upload Component
            bt_pic = gr.Image(label="Upload an image to start")
            
            # Chatbot Display
            chat_bot = gr.Chatbot(label="Ask anything about the image")
            
            # Text Input for User Messages
            txt_message = gr.Textbox(label="Input text")
            
            # Define Actions
            regenerate.click(
                regenerate_button_clicked,
                [
                    txt_message, 
                    chat_bot, 
                    app_session, 
                    params_form, 
                    num_beams, 
                    repetition_penalty, 
                    repetition_penalty_2, 
                    top_p, 
                    top_k, 
                    temperature
                ],
                [txt_message, chat_bot, app_session]
            )
            
            txt_message.submit(
                respond, 
                [
                    txt_message, 
                    chat_bot, 
                    app_session, 
                    params_form, 
                    num_beams, 
                    repetition_penalty, 
                    repetition_penalty_2, 
                    top_p, 
                    top_k, 
                    temperature
                ], 
                [txt_message, chat_bot, app_session]
            )
            
            bt_pic.upload(
                lambda: None, 
                None, 
                chat_bot, 
                queue=False
            ).then(
                upload_img, 
                inputs=[bt_pic, chat_bot, app_session], 
                outputs=[chat_bot, app_session]
            )

# Launch the Gradio App with share=True for testing
demo.launch(share=True, debug=True)