File size: 7,465 Bytes
8683813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import torch
import torch.cuda.amp as amp
import torch.nn as nn

from zoedepth.trainers.loss import GradL1Loss, SILogLoss
from zoedepth.utils.config import DATASETS_CONFIG
from zoedepth.utils.misc import compute_metrics
from zoedepth.data.preprocess import get_black_border

from .base_trainer import BaseTrainer
from torchvision import transforms
from PIL import Image
import numpy as np

class Trainer(BaseTrainer):
    def __init__(self, config, model, train_loader, test_loader=None, device=None):
        super().__init__(config, model, train_loader,
                         test_loader=test_loader, device=device)
        self.device = device
        self.silog_loss = SILogLoss()
        self.grad_loss = GradL1Loss()
        self.scaler = amp.GradScaler(enabled=self.config.use_amp)

    def train_on_batch(self, batch, train_step):
        """
        Expects a batch of images and depth as input
        batch["image"].shape : batch_size, c, h, w
        batch["depth"].shape : batch_size, 1, h, w
        """

        images, depths_gt = batch['image'].to(
            self.device), batch['depth'].to(self.device)
        dataset = batch['dataset'][0]

        b, c, h, w = images.size()
        mask = batch["mask"].to(self.device).to(torch.bool)

        losses = {}

        with amp.autocast(enabled=self.config.use_amp):

            output = self.model(images)
            pred_depths = output['metric_depth']

            l_si, pred = self.silog_loss(
                pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
            loss = self.config.w_si * l_si
            losses[self.silog_loss.name] = l_si

            if self.config.w_grad > 0:
                l_grad = self.grad_loss(pred, depths_gt, mask=mask)
                loss = loss + self.config.w_grad * l_grad
                losses[self.grad_loss.name] = l_grad
            else:
                l_grad = torch.Tensor([0])

        self.scaler.scale(loss).backward()

        if self.config.clip_grad > 0:
            self.scaler.unscale_(self.optimizer)
            nn.utils.clip_grad_norm_(
                self.model.parameters(), self.config.clip_grad)

        self.scaler.step(self.optimizer)

        if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0:
            # -99 is treated as invalid depth in the log_images function and is colored grey.
            depths_gt[torch.logical_not(mask)] = -99

            self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train",
                            min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])

            if self.config.get("log_rel", False):
                self.log_images(
                    scalar_field={"RelPred": output["relative_depth"][0]}, prefix="TrainRel")

        self.scaler.update()
        self.optimizer.zero_grad()

        return losses
    
    @torch.no_grad()
    def eval_infer(self, x):
        with amp.autocast(enabled=self.config.use_amp):
            m = self.model.module if self.config.multigpu else self.model
            pred_depths = m(x)['metric_depth']
        return pred_depths

    @torch.no_grad()
    def crop_aware_infer(self, x):
        # if we are not avoiding the black border, we can just use the normal inference
        if not self.config.get("avoid_boundary", False):
            return self.eval_infer(x)
        
        # otherwise, we need to crop the image to avoid the black border
        # For now, this may be a bit slow due to converting to numpy and back
        # We assume no normalization is done on the input image

        # get the black border
        assert x.shape[0] == 1, "Only batch size 1 is supported for now"
        x_pil = transforms.ToPILImage()(x[0].cpu())
        x_np = np.array(x_pil, dtype=np.uint8)
        black_border_params = get_black_border(x_np)
        top, bottom, left, right = black_border_params.top, black_border_params.bottom, black_border_params.left, black_border_params.right
        x_np_cropped = x_np[top:bottom, left:right, :]
        x_cropped = transforms.ToTensor()(Image.fromarray(x_np_cropped))

        # run inference on the cropped image
        pred_depths_cropped = self.eval_infer(x_cropped.unsqueeze(0).to(self.device))

        # resize the prediction to x_np_cropped's size
        pred_depths_cropped = nn.functional.interpolate(
            pred_depths_cropped, size=(x_np_cropped.shape[0], x_np_cropped.shape[1]), mode="bilinear", align_corners=False)
        

        # pad the prediction back to the original size
        pred_depths = torch.zeros((1, 1, x_np.shape[0], x_np.shape[1]), device=pred_depths_cropped.device, dtype=pred_depths_cropped.dtype)
        pred_depths[:, :, top:bottom, left:right] = pred_depths_cropped

        return pred_depths



    def validate_on_batch(self, batch, val_step):
        images = batch['image'].to(self.device)
        depths_gt = batch['depth'].to(self.device)
        dataset = batch['dataset'][0]
        mask = batch["mask"].to(self.device)
        if 'has_valid_depth' in batch:
            if not batch['has_valid_depth']:
                return None, None

        depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0)
        mask = mask.squeeze().unsqueeze(0).unsqueeze(0)
        if dataset == 'nyu':
            pred_depths = self.crop_aware_infer(images)
        else:
            pred_depths = self.eval_infer(images)
        pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0)

        with amp.autocast(enabled=self.config.use_amp):
            l_depth = self.silog_loss(
                pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True)

        metrics = compute_metrics(depths_gt, pred_depths, **self.config)
        losses = {f"{self.silog_loss.name}": l_depth.item()}

        if val_step == 1 and self.should_log:
            depths_gt[torch.logical_not(mask)] = -99
            self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test",
                            min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])

        return metrics, losses