File size: 1,525 Bytes
8683813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torch
from annotator.oneformer.detectron2.config import get_cfg
from annotator.oneformer.detectron2.projects.deeplab import add_deeplab_config
from annotator.oneformer.detectron2.data import MetadataCatalog
from annotator.oneformer.oneformer import (
add_oneformer_config,
add_common_config,
add_swin_config,
add_dinat_config,
)
from annotator.oneformer.oneformer.demo.defaults import DefaultPredictor
from annotator.oneformer.oneformer.demo.visualizer import Visualizer, ColorMode
def make_detectron2_model(config_path, ckpt_path):
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_swin_config(cfg)
add_oneformer_config(cfg)
add_dinat_config(cfg)
cfg.merge_from_file(config_path)
if torch.cuda.is_available():
cfg.MODEL.DEVICE = 'cuda'
else:
cfg.MODEL.DEVICE = 'cpu'
cfg.MODEL.WEIGHTS = ckpt_path
cfg.freeze()
metadata = MetadataCatalog.get(cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused")
return DefaultPredictor(cfg), metadata
def semantic_run(img, predictor, metadata):
predictions = predictor(img[:, :, ::-1], "semantic") # Predictor of OneFormer must use BGR image !!!
visualizer_map = Visualizer(img, is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_sem_seg(predictions["sem_seg"].argmax(dim=0).cpu(), alpha=1, is_text=False).get_image()
return out_map
|