File size: 7,398 Bytes
8683813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from itertools import count
from typing import List, Tuple
import torch
import tqdm
from fvcore.common.timer import Timer
from annotator.oneformer.detectron2.utils import comm
from .build import build_batch_data_loader
from .common import DatasetFromList, MapDataset
from .samplers import TrainingSampler
logger = logging.getLogger(__name__)
class _EmptyMapDataset(torch.utils.data.Dataset):
"""
Map anything to emptiness.
"""
def __init__(self, dataset):
self.ds = dataset
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
_ = self.ds[idx]
return [0]
def iter_benchmark(
iterator, num_iter: int, warmup: int = 5, max_time_seconds: float = 60
) -> Tuple[float, List[float]]:
"""
Benchmark an iterator/iterable for `num_iter` iterations with an extra
`warmup` iterations of warmup.
End early if `max_time_seconds` time is spent on iterations.
Returns:
float: average time (seconds) per iteration
list[float]: time spent on each iteration. Sometimes useful for further analysis.
"""
num_iter, warmup = int(num_iter), int(warmup)
iterator = iter(iterator)
for _ in range(warmup):
next(iterator)
timer = Timer()
all_times = []
for curr_iter in tqdm.trange(num_iter):
start = timer.seconds()
if start > max_time_seconds:
num_iter = curr_iter
break
next(iterator)
all_times.append(timer.seconds() - start)
avg = timer.seconds() / num_iter
return avg, all_times
class DataLoaderBenchmark:
"""
Some common benchmarks that help understand perf bottleneck of a standard dataloader
made of dataset, mapper and sampler.
"""
def __init__(
self,
dataset,
*,
mapper,
sampler=None,
total_batch_size,
num_workers=0,
max_time_seconds: int = 90,
):
"""
Args:
max_time_seconds (int): maximum time to spent for each benchmark
other args: same as in `build.py:build_detection_train_loader`
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False, serialize=True)
if sampler is None:
sampler = TrainingSampler(len(dataset))
self.dataset = dataset
self.mapper = mapper
self.sampler = sampler
self.total_batch_size = total_batch_size
self.num_workers = num_workers
self.per_gpu_batch_size = self.total_batch_size // comm.get_world_size()
self.max_time_seconds = max_time_seconds
def _benchmark(self, iterator, num_iter, warmup, msg=None):
avg, all_times = iter_benchmark(iterator, num_iter, warmup, self.max_time_seconds)
if msg is not None:
self._log_time(msg, avg, all_times)
return avg, all_times
def _log_time(self, msg, avg, all_times, distributed=False):
percentiles = [np.percentile(all_times, k, interpolation="nearest") for k in [1, 5, 95, 99]]
if not distributed:
logger.info(
f"{msg}: avg={1.0/avg:.1f} it/s, "
f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, "
f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s."
)
return
avg_per_gpu = comm.all_gather(avg)
percentiles_per_gpu = comm.all_gather(percentiles)
if comm.get_rank() > 0:
return
for idx, avg, percentiles in zip(count(), avg_per_gpu, percentiles_per_gpu):
logger.info(
f"GPU{idx} {msg}: avg={1.0/avg:.1f} it/s, "
f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, "
f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s."
)
def benchmark_dataset(self, num_iter, warmup=5):
"""
Benchmark the speed of taking raw samples from the dataset.
"""
def loader():
while True:
for k in self.sampler:
yield self.dataset[k]
self._benchmark(loader(), num_iter, warmup, "Dataset Alone")
def benchmark_mapper(self, num_iter, warmup=5):
"""
Benchmark the speed of taking raw samples from the dataset and map
them in a single process.
"""
def loader():
while True:
for k in self.sampler:
yield self.mapper(self.dataset[k])
self._benchmark(loader(), num_iter, warmup, "Single Process Mapper (sec/sample)")
def benchmark_workers(self, num_iter, warmup=10):
"""
Benchmark the dataloader by tuning num_workers to [0, 1, self.num_workers].
"""
candidates = [0, 1]
if self.num_workers not in candidates:
candidates.append(self.num_workers)
dataset = MapDataset(self.dataset, self.mapper)
for n in candidates:
loader = build_batch_data_loader(
dataset,
self.sampler,
self.total_batch_size,
num_workers=n,
)
self._benchmark(
iter(loader),
num_iter * max(n, 1),
warmup * max(n, 1),
f"DataLoader ({n} workers, bs={self.per_gpu_batch_size})",
)
del loader
def benchmark_IPC(self, num_iter, warmup=10):
"""
Benchmark the dataloader where each worker outputs nothing. This
eliminates the IPC overhead compared to the regular dataloader.
PyTorch multiprocessing's IPC only optimizes for torch tensors.
Large numpy arrays or other data structure may incur large IPC overhead.
"""
n = self.num_workers
dataset = _EmptyMapDataset(MapDataset(self.dataset, self.mapper))
loader = build_batch_data_loader(
dataset, self.sampler, self.total_batch_size, num_workers=n
)
self._benchmark(
iter(loader),
num_iter * max(n, 1),
warmup * max(n, 1),
f"DataLoader ({n} workers, bs={self.per_gpu_batch_size}) w/o comm",
)
def benchmark_distributed(self, num_iter, warmup=10):
"""
Benchmark the dataloader in each distributed worker, and log results of
all workers. This helps understand the final performance as well as
the variances among workers.
It also prints startup time (first iter) of the dataloader.
"""
gpu = comm.get_world_size()
dataset = MapDataset(self.dataset, self.mapper)
n = self.num_workers
loader = build_batch_data_loader(
dataset, self.sampler, self.total_batch_size, num_workers=n
)
timer = Timer()
loader = iter(loader)
next(loader)
startup_time = timer.seconds()
logger.info("Dataloader startup time: {:.2f} seconds".format(startup_time))
comm.synchronize()
avg, all_times = self._benchmark(loader, num_iter * max(n, 1), warmup * max(n, 1))
del loader
self._log_time(
f"DataLoader ({gpu} GPUs x {n} workers, total bs={self.total_batch_size})",
avg,
all_times,
True,
)
|