File size: 2,508 Bytes
8683813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from annotator.uniformer.mmcv.utils import TORCH_VERSION, build_from_cfg, digit_version
from .registry import ACTIVATION_LAYERS
for module in [
nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU,
nn.Sigmoid, nn.Tanh
]:
ACTIVATION_LAYERS.register_module(module=module)
@ACTIVATION_LAYERS.register_module(name='Clip')
@ACTIVATION_LAYERS.register_module()
class Clamp(nn.Module):
"""Clamp activation layer.
This activation function is to clamp the feature map value within
:math:`[min, max]`. More details can be found in ``torch.clamp()``.
Args:
min (Number | optional): Lower-bound of the range to be clamped to.
Default to -1.
max (Number | optional): Upper-bound of the range to be clamped to.
Default to 1.
"""
def __init__(self, min=-1., max=1.):
super(Clamp, self).__init__()
self.min = min
self.max = max
def forward(self, x):
"""Forward function.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: Clamped tensor.
"""
return torch.clamp(x, min=self.min, max=self.max)
class GELU(nn.Module):
r"""Applies the Gaussian Error Linear Units function:
.. math::
\text{GELU}(x) = x * \Phi(x)
where :math:`\Phi(x)` is the Cumulative Distribution Function for
Gaussian Distribution.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. image:: scripts/activation_images/GELU.png
Examples::
>>> m = nn.GELU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input):
return F.gelu(input)
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.4')):
ACTIVATION_LAYERS.register_module(module=GELU)
else:
ACTIVATION_LAYERS.register_module(module=nn.GELU)
def build_activation_layer(cfg):
"""Build activation layer.
Args:
cfg (dict): The activation layer config, which should contain:
- type (str): Layer type.
- layer args: Args needed to instantiate an activation layer.
Returns:
nn.Module: Created activation layer.
"""
return build_from_cfg(cfg, ACTIVATION_LAYERS)
|