File size: 5,154 Bytes
8683813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) OpenMMLab. All rights reserved.
import inspect

import torch.nn as nn

from annotator.uniformer.mmcv.utils import is_tuple_of
from annotator.uniformer.mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm, _InstanceNorm
from .registry import NORM_LAYERS

NORM_LAYERS.register_module('BN', module=nn.BatchNorm2d)
NORM_LAYERS.register_module('BN1d', module=nn.BatchNorm1d)
NORM_LAYERS.register_module('BN2d', module=nn.BatchNorm2d)
NORM_LAYERS.register_module('BN3d', module=nn.BatchNorm3d)
NORM_LAYERS.register_module('SyncBN', module=SyncBatchNorm)
NORM_LAYERS.register_module('GN', module=nn.GroupNorm)
NORM_LAYERS.register_module('LN', module=nn.LayerNorm)
NORM_LAYERS.register_module('IN', module=nn.InstanceNorm2d)
NORM_LAYERS.register_module('IN1d', module=nn.InstanceNorm1d)
NORM_LAYERS.register_module('IN2d', module=nn.InstanceNorm2d)
NORM_LAYERS.register_module('IN3d', module=nn.InstanceNorm3d)


def infer_abbr(class_type):
    """Infer abbreviation from the class name.

    When we build a norm layer with `build_norm_layer()`, we want to preserve
    the norm type in variable names, e.g, self.bn1, self.gn. This method will
    infer the abbreviation to map class types to abbreviations.

    Rule 1: If the class has the property "_abbr_", return the property.
    Rule 2: If the parent class is _BatchNorm, GroupNorm, LayerNorm or
    InstanceNorm, the abbreviation of this layer will be "bn", "gn", "ln" and
    "in" respectively.
    Rule 3: If the class name contains "batch", "group", "layer" or "instance",
    the abbreviation of this layer will be "bn", "gn", "ln" and "in"
    respectively.
    Rule 4: Otherwise, the abbreviation falls back to "norm".

    Args:
        class_type (type): The norm layer type.

    Returns:
        str: The inferred abbreviation.
    """
    if not inspect.isclass(class_type):
        raise TypeError(
            f'class_type must be a type, but got {type(class_type)}')
    if hasattr(class_type, '_abbr_'):
        return class_type._abbr_
    if issubclass(class_type, _InstanceNorm):  # IN is a subclass of BN
        return 'in'
    elif issubclass(class_type, _BatchNorm):
        return 'bn'
    elif issubclass(class_type, nn.GroupNorm):
        return 'gn'
    elif issubclass(class_type, nn.LayerNorm):
        return 'ln'
    else:
        class_name = class_type.__name__.lower()
        if 'batch' in class_name:
            return 'bn'
        elif 'group' in class_name:
            return 'gn'
        elif 'layer' in class_name:
            return 'ln'
        elif 'instance' in class_name:
            return 'in'
        else:
            return 'norm_layer'


def build_norm_layer(cfg, num_features, postfix=''):
    """Build normalization layer.

    Args:
        cfg (dict): The norm layer config, which should contain:

            - type (str): Layer type.
            - layer args: Args needed to instantiate a norm layer.
            - requires_grad (bool, optional): Whether stop gradient updates.
        num_features (int): Number of input channels.
        postfix (int | str): The postfix to be appended into norm abbreviation
            to create named layer.

    Returns:
        (str, nn.Module): The first element is the layer name consisting of
            abbreviation and postfix, e.g., bn1, gn. The second element is the
            created norm layer.
    """
    if not isinstance(cfg, dict):
        raise TypeError('cfg must be a dict')
    if 'type' not in cfg:
        raise KeyError('the cfg dict must contain the key "type"')
    cfg_ = cfg.copy()

    layer_type = cfg_.pop('type')
    if layer_type not in NORM_LAYERS:
        raise KeyError(f'Unrecognized norm type {layer_type}')

    norm_layer = NORM_LAYERS.get(layer_type)
    abbr = infer_abbr(norm_layer)

    assert isinstance(postfix, (int, str))
    name = abbr + str(postfix)

    requires_grad = cfg_.pop('requires_grad', True)
    cfg_.setdefault('eps', 1e-5)
    if layer_type != 'GN':
        layer = norm_layer(num_features, **cfg_)
        if layer_type == 'SyncBN' and hasattr(layer, '_specify_ddp_gpu_num'):
            layer._specify_ddp_gpu_num(1)
    else:
        assert 'num_groups' in cfg_
        layer = norm_layer(num_channels=num_features, **cfg_)

    for param in layer.parameters():
        param.requires_grad = requires_grad

    return name, layer


def is_norm(layer, exclude=None):
    """Check if a layer is a normalization layer.

    Args:
        layer (nn.Module): The layer to be checked.
        exclude (type | tuple[type]): Types to be excluded.

    Returns:
        bool: Whether the layer is a norm layer.
    """
    if exclude is not None:
        if not isinstance(exclude, tuple):
            exclude = (exclude, )
        if not is_tuple_of(exclude, type):
            raise TypeError(
                f'"exclude" must be either None or type or a tuple of types, '
                f'but got {type(exclude)}: {exclude}')

    if exclude and isinstance(layer, exclude):
        return False

    all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm)
    return isinstance(layer, all_norm_bases)