File size: 5,451 Bytes
8683813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) OpenMMLab. All rights reserved.
import numbers
from abc import ABCMeta, abstractmethod

import numpy as np
import torch

from ..hook import Hook


class LoggerHook(Hook):
    """Base class for logger hooks.

    Args:
        interval (int): Logging interval (every k iterations).
        ignore_last (bool): Ignore the log of last iterations in each epoch
            if less than `interval`.
        reset_flag (bool): Whether to clear the output buffer after logging.
        by_epoch (bool): Whether EpochBasedRunner is used.
    """

    __metaclass__ = ABCMeta

    def __init__(self,
                 interval=10,
                 ignore_last=True,
                 reset_flag=False,
                 by_epoch=True):
        self.interval = interval
        self.ignore_last = ignore_last
        self.reset_flag = reset_flag
        self.by_epoch = by_epoch

    @abstractmethod
    def log(self, runner):
        pass

    @staticmethod
    def is_scalar(val, include_np=True, include_torch=True):
        """Tell the input variable is a scalar or not.

        Args:
            val: Input variable.
            include_np (bool): Whether include 0-d np.ndarray as a scalar.
            include_torch (bool): Whether include 0-d torch.Tensor as a scalar.

        Returns:
            bool: True or False.
        """
        if isinstance(val, numbers.Number):
            return True
        elif include_np and isinstance(val, np.ndarray) and val.ndim == 0:
            return True
        elif include_torch and isinstance(val, torch.Tensor) and len(val) == 1:
            return True
        else:
            return False

    def get_mode(self, runner):
        if runner.mode == 'train':
            if 'time' in runner.log_buffer.output:
                mode = 'train'
            else:
                mode = 'val'
        elif runner.mode == 'val':
            mode = 'val'
        else:
            raise ValueError(f"runner mode should be 'train' or 'val', "
                             f'but got {runner.mode}')
        return mode

    def get_epoch(self, runner):
        if runner.mode == 'train':
            epoch = runner.epoch + 1
        elif runner.mode == 'val':
            # normal val mode
            # runner.epoch += 1 has been done before val workflow
            epoch = runner.epoch
        else:
            raise ValueError(f"runner mode should be 'train' or 'val', "
                             f'but got {runner.mode}')
        return epoch

    def get_iter(self, runner, inner_iter=False):
        """Get the current training iteration step."""
        if self.by_epoch and inner_iter:
            current_iter = runner.inner_iter + 1
        else:
            current_iter = runner.iter + 1
        return current_iter

    def get_lr_tags(self, runner):
        tags = {}
        lrs = runner.current_lr()
        if isinstance(lrs, dict):
            for name, value in lrs.items():
                tags[f'learning_rate/{name}'] = value[0]
        else:
            tags['learning_rate'] = lrs[0]
        return tags

    def get_momentum_tags(self, runner):
        tags = {}
        momentums = runner.current_momentum()
        if isinstance(momentums, dict):
            for name, value in momentums.items():
                tags[f'momentum/{name}'] = value[0]
        else:
            tags['momentum'] = momentums[0]
        return tags

    def get_loggable_tags(self,
                          runner,
                          allow_scalar=True,
                          allow_text=False,
                          add_mode=True,
                          tags_to_skip=('time', 'data_time')):
        tags = {}
        for var, val in runner.log_buffer.output.items():
            if var in tags_to_skip:
                continue
            if self.is_scalar(val) and not allow_scalar:
                continue
            if isinstance(val, str) and not allow_text:
                continue
            if add_mode:
                var = f'{self.get_mode(runner)}/{var}'
            tags[var] = val
        tags.update(self.get_lr_tags(runner))
        tags.update(self.get_momentum_tags(runner))
        return tags

    def before_run(self, runner):
        for hook in runner.hooks[::-1]:
            if isinstance(hook, LoggerHook):
                hook.reset_flag = True
                break

    def before_epoch(self, runner):
        runner.log_buffer.clear()  # clear logs of last epoch

    def after_train_iter(self, runner):
        if self.by_epoch and self.every_n_inner_iters(runner, self.interval):
            runner.log_buffer.average(self.interval)
        elif not self.by_epoch and self.every_n_iters(runner, self.interval):
            runner.log_buffer.average(self.interval)
        elif self.end_of_epoch(runner) and not self.ignore_last:
            # not precise but more stable
            runner.log_buffer.average(self.interval)

        if runner.log_buffer.ready:
            self.log(runner)
            if self.reset_flag:
                runner.log_buffer.clear_output()

    def after_train_epoch(self, runner):
        if runner.log_buffer.ready:
            self.log(runner)
            if self.reset_flag:
                runner.log_buffer.clear_output()

    def after_val_epoch(self, runner):
        runner.log_buffer.average()
        self.log(runner)
        if self.reset_flag:
            runner.log_buffer.clear_output()