File size: 10,684 Bytes
8683813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import os
import os.path as osp
from collections import OrderedDict

import torch
import torch.distributed as dist

import annotator.uniformer.mmcv as mmcv
from annotator.uniformer.mmcv.fileio.file_client import FileClient
from annotator.uniformer.mmcv.utils import is_tuple_of, scandir
from ..hook import HOOKS
from .base import LoggerHook


@HOOKS.register_module()
class TextLoggerHook(LoggerHook):
    """Logger hook in text.

    In this logger hook, the information will be printed on terminal and
    saved in json file.

    Args:
        by_epoch (bool, optional): Whether EpochBasedRunner is used.
            Default: True.
        interval (int, optional): Logging interval (every k iterations).
            Default: 10.
        ignore_last (bool, optional): Ignore the log of last iterations in each
            epoch if less than :attr:`interval`. Default: True.
        reset_flag (bool, optional): Whether to clear the output buffer after
            logging. Default: False.
        interval_exp_name (int, optional): Logging interval for experiment
            name. This feature is to help users conveniently get the experiment
            information from screen or log file. Default: 1000.
        out_dir (str, optional): Logs are saved in ``runner.work_dir`` default.
            If ``out_dir`` is specified, logs will be copied to a new directory
            which is the concatenation of ``out_dir`` and the last level
            directory of ``runner.work_dir``. Default: None.
            `New in version 1.3.16.`
        out_suffix (str or tuple[str], optional): Those filenames ending with
            ``out_suffix`` will be copied to ``out_dir``.
            Default: ('.log.json', '.log', '.py').
            `New in version 1.3.16.`
        keep_local (bool, optional): Whether to keep local log when
            :attr:`out_dir` is specified. If False, the local log will be
            removed. Default: True.
            `New in version 1.3.16.`
        file_client_args (dict, optional): Arguments to instantiate a
            FileClient. See :class:`mmcv.fileio.FileClient` for details.
            Default: None.
            `New in version 1.3.16.`
    """

    def __init__(self,
                 by_epoch=True,
                 interval=10,
                 ignore_last=True,
                 reset_flag=False,
                 interval_exp_name=1000,
                 out_dir=None,
                 out_suffix=('.log.json', '.log', '.py'),
                 keep_local=True,
                 file_client_args=None):
        super(TextLoggerHook, self).__init__(interval, ignore_last, reset_flag,
                                             by_epoch)
        self.by_epoch = by_epoch
        self.time_sec_tot = 0
        self.interval_exp_name = interval_exp_name

        if out_dir is None and file_client_args is not None:
            raise ValueError(
                'file_client_args should be "None" when `out_dir` is not'
                'specified.')
        self.out_dir = out_dir

        if not (out_dir is None or isinstance(out_dir, str)
                or is_tuple_of(out_dir, str)):
            raise TypeError('out_dir should be  "None" or string or tuple of '
                            'string, but got {out_dir}')
        self.out_suffix = out_suffix

        self.keep_local = keep_local
        self.file_client_args = file_client_args
        if self.out_dir is not None:
            self.file_client = FileClient.infer_client(file_client_args,
                                                       self.out_dir)

    def before_run(self, runner):
        super(TextLoggerHook, self).before_run(runner)

        if self.out_dir is not None:
            self.file_client = FileClient.infer_client(self.file_client_args,
                                                       self.out_dir)
            # The final `self.out_dir` is the concatenation of `self.out_dir`
            # and the last level directory of `runner.work_dir`
            basename = osp.basename(runner.work_dir.rstrip(osp.sep))
            self.out_dir = self.file_client.join_path(self.out_dir, basename)
            runner.logger.info(
                (f'Text logs will be saved to {self.out_dir} by '
                 f'{self.file_client.name} after the training process.'))

        self.start_iter = runner.iter
        self.json_log_path = osp.join(runner.work_dir,
                                      f'{runner.timestamp}.log.json')
        if runner.meta is not None:
            self._dump_log(runner.meta, runner)

    def _get_max_memory(self, runner):
        device = getattr(runner.model, 'output_device', None)
        mem = torch.cuda.max_memory_allocated(device=device)
        mem_mb = torch.tensor([mem / (1024 * 1024)],
                              dtype=torch.int,
                              device=device)
        if runner.world_size > 1:
            dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX)
        return mem_mb.item()

    def _log_info(self, log_dict, runner):
        # print exp name for users to distinguish experiments
        # at every ``interval_exp_name`` iterations and the end of each epoch
        if runner.meta is not None and 'exp_name' in runner.meta:
            if (self.every_n_iters(runner, self.interval_exp_name)) or (
                    self.by_epoch and self.end_of_epoch(runner)):
                exp_info = f'Exp name: {runner.meta["exp_name"]}'
                runner.logger.info(exp_info)

        if log_dict['mode'] == 'train':
            if isinstance(log_dict['lr'], dict):
                lr_str = []
                for k, val in log_dict['lr'].items():
                    lr_str.append(f'lr_{k}: {val:.3e}')
                lr_str = ' '.join(lr_str)
            else:
                lr_str = f'lr: {log_dict["lr"]:.3e}'

            # by epoch: Epoch [4][100/1000]
            # by iter:  Iter [100/100000]
            if self.by_epoch:
                log_str = f'Epoch [{log_dict["epoch"]}]' \
                          f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t'
            else:
                log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t'
            log_str += f'{lr_str}, '

            if 'time' in log_dict.keys():
                self.time_sec_tot += (log_dict['time'] * self.interval)
                time_sec_avg = self.time_sec_tot / (
                    runner.iter - self.start_iter + 1)
                eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1)
                eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
                log_str += f'eta: {eta_str}, '
                log_str += f'time: {log_dict["time"]:.3f}, ' \
                           f'data_time: {log_dict["data_time"]:.3f}, '
                # statistic memory
                if torch.cuda.is_available():
                    log_str += f'memory: {log_dict["memory"]}, '
        else:
            # val/test time
            # here 1000 is the length of the val dataloader
            # by epoch: Epoch[val] [4][1000]
            # by iter: Iter[val] [1000]
            if self.by_epoch:
                log_str = f'Epoch({log_dict["mode"]}) ' \
                    f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t'
            else:
                log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t'

        log_items = []
        for name, val in log_dict.items():
            # TODO: resolve this hack
            # these items have been in log_str
            if name in [
                    'mode', 'Epoch', 'iter', 'lr', 'time', 'data_time',
                    'memory', 'epoch'
            ]:
                continue
            if isinstance(val, float):
                val = f'{val:.4f}'
            log_items.append(f'{name}: {val}')
        log_str += ', '.join(log_items)

        runner.logger.info(log_str)

    def _dump_log(self, log_dict, runner):
        # dump log in json format
        json_log = OrderedDict()
        for k, v in log_dict.items():
            json_log[k] = self._round_float(v)
        # only append log at last line
        if runner.rank == 0:
            with open(self.json_log_path, 'a+') as f:
                mmcv.dump(json_log, f, file_format='json')
                f.write('\n')

    def _round_float(self, items):
        if isinstance(items, list):
            return [self._round_float(item) for item in items]
        elif isinstance(items, float):
            return round(items, 5)
        else:
            return items

    def log(self, runner):
        if 'eval_iter_num' in runner.log_buffer.output:
            # this doesn't modify runner.iter and is regardless of by_epoch
            cur_iter = runner.log_buffer.output.pop('eval_iter_num')
        else:
            cur_iter = self.get_iter(runner, inner_iter=True)

        log_dict = OrderedDict(
            mode=self.get_mode(runner),
            epoch=self.get_epoch(runner),
            iter=cur_iter)

        # only record lr of the first param group
        cur_lr = runner.current_lr()
        if isinstance(cur_lr, list):
            log_dict['lr'] = cur_lr[0]
        else:
            assert isinstance(cur_lr, dict)
            log_dict['lr'] = {}
            for k, lr_ in cur_lr.items():
                assert isinstance(lr_, list)
                log_dict['lr'].update({k: lr_[0]})

        if 'time' in runner.log_buffer.output:
            # statistic memory
            if torch.cuda.is_available():
                log_dict['memory'] = self._get_max_memory(runner)

        log_dict = dict(log_dict, **runner.log_buffer.output)

        self._log_info(log_dict, runner)
        self._dump_log(log_dict, runner)
        return log_dict

    def after_run(self, runner):
        # copy or upload logs to self.out_dir
        if self.out_dir is not None:
            for filename in scandir(runner.work_dir, self.out_suffix, True):
                local_filepath = osp.join(runner.work_dir, filename)
                out_filepath = self.file_client.join_path(
                    self.out_dir, filename)
                with open(local_filepath, 'r') as f:
                    self.file_client.put_text(f.read(), out_filepath)

                runner.logger.info(
                    (f'The file {local_filepath} has been uploaded to '
                     f'{out_filepath}.'))

                if not self.keep_local:
                    os.remove(local_filepath)
                    runner.logger.info(
                        (f'{local_filepath} was removed due to the '
                         '`self.keep_local=False`'))