File size: 10,390 Bytes
8683813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import logging
import annotator.uniformer.mmcv as mmcv
import torch.nn as nn
from annotator.uniformer.mmcv.cnn import ConvModule, constant_init, kaiming_init
from annotator.uniformer.mmcv.cnn.bricks import Conv2dAdaptivePadding
from annotator.uniformer.mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from ..utils import InvertedResidualV3 as InvertedResidual
@BACKBONES.register_module()
class MobileNetV3(nn.Module):
"""MobileNetV3 backbone.
This backbone is the improved implementation of `Searching for MobileNetV3
<https://ieeexplore.ieee.org/document/9008835>`_.
Args:
arch (str): Architecture of mobilnetv3, from {'small', 'large'}.
Default: 'small'.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
out_indices (tuple[int]): Output from which layer.
Default: (0, 1, 12).
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save
some memory while slowing down the training speed.
Default: False.
"""
# Parameters to build each block:
# [kernel size, mid channels, out channels, with_se, act type, stride]
arch_settings = {
'small': [[3, 16, 16, True, 'ReLU', 2], # block0 layer1 os=4
[3, 72, 24, False, 'ReLU', 2], # block1 layer2 os=8
[3, 88, 24, False, 'ReLU', 1],
[5, 96, 40, True, 'HSwish', 2], # block2 layer4 os=16
[5, 240, 40, True, 'HSwish', 1],
[5, 240, 40, True, 'HSwish', 1],
[5, 120, 48, True, 'HSwish', 1], # block3 layer7 os=16
[5, 144, 48, True, 'HSwish', 1],
[5, 288, 96, True, 'HSwish', 2], # block4 layer9 os=32
[5, 576, 96, True, 'HSwish', 1],
[5, 576, 96, True, 'HSwish', 1]],
'large': [[3, 16, 16, False, 'ReLU', 1], # block0 layer1 os=2
[3, 64, 24, False, 'ReLU', 2], # block1 layer2 os=4
[3, 72, 24, False, 'ReLU', 1],
[5, 72, 40, True, 'ReLU', 2], # block2 layer4 os=8
[5, 120, 40, True, 'ReLU', 1],
[5, 120, 40, True, 'ReLU', 1],
[3, 240, 80, False, 'HSwish', 2], # block3 layer7 os=16
[3, 200, 80, False, 'HSwish', 1],
[3, 184, 80, False, 'HSwish', 1],
[3, 184, 80, False, 'HSwish', 1],
[3, 480, 112, True, 'HSwish', 1], # block4 layer11 os=16
[3, 672, 112, True, 'HSwish', 1],
[5, 672, 160, True, 'HSwish', 2], # block5 layer13 os=32
[5, 960, 160, True, 'HSwish', 1],
[5, 960, 160, True, 'HSwish', 1]]
} # yapf: disable
def __init__(self,
arch='small',
conv_cfg=None,
norm_cfg=dict(type='BN'),
out_indices=(0, 1, 12),
frozen_stages=-1,
reduction_factor=1,
norm_eval=False,
with_cp=False):
super(MobileNetV3, self).__init__()
assert arch in self.arch_settings
assert isinstance(reduction_factor, int) and reduction_factor > 0
assert mmcv.is_tuple_of(out_indices, int)
for index in out_indices:
if index not in range(0, len(self.arch_settings[arch]) + 2):
raise ValueError(
'the item in out_indices must in '
f'range(0, {len(self.arch_settings[arch])+2}). '
f'But received {index}')
if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2):
raise ValueError('frozen_stages must be in range(-1, '
f'{len(self.arch_settings[arch])+2}). '
f'But received {frozen_stages}')
self.arch = arch
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.reduction_factor = reduction_factor
self.norm_eval = norm_eval
self.with_cp = with_cp
self.layers = self._make_layer()
def _make_layer(self):
layers = []
# build the first layer (layer0)
in_channels = 16
layer = ConvModule(
in_channels=3,
out_channels=in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=dict(type='Conv2dAdaptivePadding'),
norm_cfg=self.norm_cfg,
act_cfg=dict(type='HSwish'))
self.add_module('layer0', layer)
layers.append('layer0')
layer_setting = self.arch_settings[self.arch]
for i, params in enumerate(layer_setting):
(kernel_size, mid_channels, out_channels, with_se, act,
stride) = params
if self.arch == 'large' and i >= 12 or self.arch == 'small' and \
i >= 8:
mid_channels = mid_channels // self.reduction_factor
out_channels = out_channels // self.reduction_factor
if with_se:
se_cfg = dict(
channels=mid_channels,
ratio=4,
act_cfg=(dict(type='ReLU'),
dict(type='HSigmoid', bias=3.0, divisor=6.0)))
else:
se_cfg = None
layer = InvertedResidual(
in_channels=in_channels,
out_channels=out_channels,
mid_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
se_cfg=se_cfg,
with_expand_conv=(in_channels != mid_channels),
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=dict(type=act),
with_cp=self.with_cp)
in_channels = out_channels
layer_name = 'layer{}'.format(i + 1)
self.add_module(layer_name, layer)
layers.append(layer_name)
# build the last layer
# block5 layer12 os=32 for small model
# block6 layer16 os=32 for large model
layer = ConvModule(
in_channels=in_channels,
out_channels=576 if self.arch == 'small' else 960,
kernel_size=1,
stride=1,
dilation=4,
padding=0,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=dict(type='HSwish'))
layer_name = 'layer{}'.format(len(layer_setting) + 1)
self.add_module(layer_name, layer)
layers.append(layer_name)
# next, convert backbone MobileNetV3 to a semantic segmentation version
if self.arch == 'small':
self.layer4.depthwise_conv.conv.stride = (1, 1)
self.layer9.depthwise_conv.conv.stride = (1, 1)
for i in range(4, len(layers)):
layer = getattr(self, layers[i])
if isinstance(layer, InvertedResidual):
modified_module = layer.depthwise_conv.conv
else:
modified_module = layer.conv
if i < 9:
modified_module.dilation = (2, 2)
pad = 2
else:
modified_module.dilation = (4, 4)
pad = 4
if not isinstance(modified_module, Conv2dAdaptivePadding):
# Adjust padding
pad *= (modified_module.kernel_size[0] - 1) // 2
modified_module.padding = (pad, pad)
else:
self.layer7.depthwise_conv.conv.stride = (1, 1)
self.layer13.depthwise_conv.conv.stride = (1, 1)
for i in range(7, len(layers)):
layer = getattr(self, layers[i])
if isinstance(layer, InvertedResidual):
modified_module = layer.depthwise_conv.conv
else:
modified_module = layer.conv
if i < 13:
modified_module.dilation = (2, 2)
pad = 2
else:
modified_module.dilation = (4, 4)
pad = 4
if not isinstance(modified_module, Conv2dAdaptivePadding):
# Adjust padding
pad *= (modified_module.kernel_size[0] - 1) // 2
modified_module.padding = (pad, pad)
return layers
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return outs
def _freeze_stages(self):
for i in range(self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(MobileNetV3, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
|