File size: 5,270 Bytes
8683813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os

from PIL import Image
import numpy as np
import cv2


class ToTensor(object):
    def __init__(self):
        self.normalize = transforms.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        # self.resize = transforms.Resize((375, 1242))

    def __call__(self, sample):
        image, depth = sample['image'], sample['depth']

        image = self.to_tensor(image)
        image = self.normalize(image)
        depth = self.to_tensor(depth)

        # image = self.resize(image)

        return {'image': image, 'depth': depth, 'dataset': "vkitti"}

    def to_tensor(self, pic):

        if isinstance(pic, np.ndarray):
            img = torch.from_numpy(pic.transpose((2, 0, 1)))
            return img

        #         # handle PIL Image
        if pic.mode == 'I':
            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
        elif pic.mode == 'I;16':
            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
        else:
            img = torch.ByteTensor(
                torch.ByteStorage.from_buffer(pic.tobytes()))
        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
        if pic.mode == 'YCbCr':
            nchannel = 3
        elif pic.mode == 'I;16':
            nchannel = 1
        else:
            nchannel = len(pic.mode)
        img = img.view(pic.size[1], pic.size[0], nchannel)

        img = img.transpose(0, 1).transpose(0, 2).contiguous()
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img


class VKITTI(Dataset):
    def __init__(self, data_dir_root, do_kb_crop=True):
        import glob
        # image paths are of the form <data_dir_root>/{HR, LR}/<scene>/{color, depth_filled}/*.png
        self.image_files = glob.glob(os.path.join(
            data_dir_root, "test_color", '*.png'))
        self.depth_files = [r.replace("test_color", "test_depth")
                            for r in self.image_files]
        self.do_kb_crop = True
        self.transform = ToTensor()

    def __getitem__(self, idx):
        image_path = self.image_files[idx]
        depth_path = self.depth_files[idx]

        image = Image.open(image_path)
        depth = Image.open(depth_path)
        depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
                           cv2.IMREAD_ANYDEPTH)
        print("dpeth min max", depth.min(), depth.max())

        # print(np.shape(image))
        # print(np.shape(depth))

        # depth[depth > 8] = -1

        if self.do_kb_crop and False:
            height = image.height
            width = image.width
            top_margin = int(height - 352)
            left_margin = int((width - 1216) / 2)
            depth = depth.crop(
                (left_margin, top_margin, left_margin + 1216, top_margin + 352))
            image = image.crop(
                (left_margin, top_margin, left_margin + 1216, top_margin + 352))
            # uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]

        image = np.asarray(image, dtype=np.float32) / 255.0
        # depth = np.asarray(depth, dtype=np.uint16) /1.
        depth = depth[..., None]
        sample = dict(image=image, depth=depth)

        # return sample
        sample = self.transform(sample)

        if idx == 0:
            print(sample["image"].shape)

        return sample

    def __len__(self):
        return len(self.image_files)


def get_vkitti_loader(data_dir_root, batch_size=1, **kwargs):
    dataset = VKITTI(data_dir_root)
    return DataLoader(dataset, batch_size, **kwargs)


if __name__ == "__main__":
    loader = get_vkitti_loader(
        data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti_test")
    print("Total files", len(loader.dataset))
    for i, sample in enumerate(loader):
        print(sample["image"].shape)
        print(sample["depth"].shape)
        print(sample["dataset"])
        print(sample['depth'].min(), sample['depth'].max())
        if i > 5:
            break