|
|
|
|
|
|
|
import os |
|
import torch |
|
import numpy as np |
|
from einops import rearrange |
|
from annotator.pidinet.model import pidinet |
|
from annotator.util import annotator_ckpts_path, safe_step |
|
|
|
|
|
class PidiNetDetector: |
|
def __init__(self): |
|
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" |
|
modelpath = os.path.join(annotator_ckpts_path, "table5_pidinet.pth") |
|
if not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) |
|
self.netNetwork = pidinet() |
|
self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(modelpath)['state_dict'].items()}) |
|
self.netNetwork = self.netNetwork.cuda() |
|
self.netNetwork.eval() |
|
|
|
def __call__(self, input_image, safe=False): |
|
assert input_image.ndim == 3 |
|
input_image = input_image[:, :, ::-1].copy() |
|
with torch.no_grad(): |
|
image_pidi = torch.from_numpy(input_image).float().cuda() |
|
image_pidi = image_pidi / 255.0 |
|
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') |
|
edge = self.netNetwork(image_pidi)[-1] |
|
edge = edge.cpu().numpy() |
|
if safe: |
|
edge = safe_step(edge) |
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) |
|
return edge[0][0] |
|
|