|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import argparse |
|
import time |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
from contextlib import suppress |
|
|
|
import geffnet |
|
from data import Dataset, create_loader, resolve_data_config |
|
from utils import accuracy, AverageMeter |
|
|
|
has_native_amp = False |
|
try: |
|
if getattr(torch.cuda.amp, 'autocast') is not None: |
|
has_native_amp = True |
|
except AttributeError: |
|
pass |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') |
|
parser.add_argument('data', metavar='DIR', |
|
help='path to dataset') |
|
parser.add_argument('--model', '-m', metavar='MODEL', default='spnasnet1_00', |
|
help='model architecture (default: dpn92)') |
|
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
|
help='number of data loading workers (default: 2)') |
|
parser.add_argument('-b', '--batch-size', default=256, type=int, |
|
metavar='N', help='mini-batch size (default: 256)') |
|
parser.add_argument('--img-size', default=None, type=int, |
|
metavar='N', help='Input image dimension, uses model default if empty') |
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', |
|
help='Override mean pixel value of dataset') |
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', |
|
help='Override std deviation of of dataset') |
|
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', |
|
help='Override default crop pct of 0.875') |
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', |
|
help='Image resize interpolation type (overrides model)') |
|
parser.add_argument('--num-classes', type=int, default=1000, |
|
help='Number classes in dataset') |
|
parser.add_argument('--print-freq', '-p', default=10, type=int, |
|
metavar='N', help='print frequency (default: 10)') |
|
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', |
|
help='path to latest checkpoint (default: none)') |
|
parser.add_argument('--pretrained', dest='pretrained', action='store_true', |
|
help='use pre-trained model') |
|
parser.add_argument('--torchscript', dest='torchscript', action='store_true', |
|
help='convert model torchscript for inference') |
|
parser.add_argument('--num-gpu', type=int, default=1, |
|
help='Number of GPUS to use') |
|
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true', |
|
help='use tensorflow mnasnet preporcessing') |
|
parser.add_argument('--no-cuda', dest='no_cuda', action='store_true', |
|
help='') |
|
parser.add_argument('--channels-last', action='store_true', default=False, |
|
help='Use channels_last memory layout') |
|
parser.add_argument('--amp', action='store_true', default=False, |
|
help='Use native Torch AMP mixed precision.') |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
|
|
if not args.checkpoint and not args.pretrained: |
|
args.pretrained = True |
|
|
|
amp_autocast = suppress |
|
if args.amp: |
|
if not has_native_amp: |
|
print("Native Torch AMP is not available (requires torch >= 1.6), using FP32.") |
|
else: |
|
amp_autocast = torch.cuda.amp.autocast |
|
|
|
|
|
model = geffnet.create_model( |
|
args.model, |
|
num_classes=args.num_classes, |
|
in_chans=3, |
|
pretrained=args.pretrained, |
|
checkpoint_path=args.checkpoint, |
|
scriptable=args.torchscript) |
|
|
|
if args.channels_last: |
|
model = model.to(memory_format=torch.channels_last) |
|
|
|
if args.torchscript: |
|
torch.jit.optimized_execution(True) |
|
model = torch.jit.script(model) |
|
|
|
print('Model %s created, param count: %d' % |
|
(args.model, sum([m.numel() for m in model.parameters()]))) |
|
|
|
data_config = resolve_data_config(model, args) |
|
|
|
criterion = nn.CrossEntropyLoss() |
|
|
|
if not args.no_cuda: |
|
if args.num_gpu > 1: |
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() |
|
else: |
|
model = model.cuda() |
|
criterion = criterion.cuda() |
|
|
|
loader = create_loader( |
|
Dataset(args.data, load_bytes=args.tf_preprocessing), |
|
input_size=data_config['input_size'], |
|
batch_size=args.batch_size, |
|
use_prefetcher=not args.no_cuda, |
|
interpolation=data_config['interpolation'], |
|
mean=data_config['mean'], |
|
std=data_config['std'], |
|
num_workers=args.workers, |
|
crop_pct=data_config['crop_pct'], |
|
tensorflow_preprocessing=args.tf_preprocessing) |
|
|
|
batch_time = AverageMeter() |
|
losses = AverageMeter() |
|
top1 = AverageMeter() |
|
top5 = AverageMeter() |
|
|
|
model.eval() |
|
end = time.time() |
|
with torch.no_grad(): |
|
for i, (input, target) in enumerate(loader): |
|
if not args.no_cuda: |
|
target = target.cuda() |
|
input = input.cuda() |
|
if args.channels_last: |
|
input = input.contiguous(memory_format=torch.channels_last) |
|
|
|
|
|
with amp_autocast(): |
|
output = model(input) |
|
loss = criterion(output, target) |
|
|
|
|
|
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) |
|
losses.update(loss.item(), input.size(0)) |
|
top1.update(prec1.item(), input.size(0)) |
|
top5.update(prec5.item(), input.size(0)) |
|
|
|
|
|
batch_time.update(time.time() - end) |
|
end = time.time() |
|
|
|
if i % args.print_freq == 0: |
|
print('Test: [{0}/{1}]\t' |
|
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t' |
|
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' |
|
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' |
|
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( |
|
i, len(loader), batch_time=batch_time, |
|
rate_avg=input.size(0) / batch_time.avg, |
|
loss=losses, top1=top1, top5=top5)) |
|
|
|
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format( |
|
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|