|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import os |
|
|
|
from einops import rearrange |
|
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny |
|
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large |
|
from .utils import pred_lines |
|
|
|
from annotator.util import annotator_ckpts_path |
|
|
|
|
|
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/mlsd_large_512_fp32.pth" |
|
|
|
|
|
class MLSDdetector: |
|
def __init__(self): |
|
model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") |
|
if not os.path.exists(model_path): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) |
|
model = MobileV2_MLSD_Large() |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
self.model = model.cuda().eval() |
|
|
|
def __call__(self, input_image, thr_v, thr_d): |
|
assert input_image.ndim == 3 |
|
img = input_image |
|
img_output = np.zeros_like(img) |
|
try: |
|
with torch.no_grad(): |
|
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) |
|
for line in lines: |
|
x_start, y_start, x_end, y_end = [int(val) for val in line] |
|
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) |
|
except Exception as e: |
|
pass |
|
return img_output[:, :, 0] |
|
|