|
|
|
import contextlib |
|
import io |
|
import itertools |
|
import json |
|
import logging |
|
import numpy as np |
|
import os |
|
import tempfile |
|
from collections import OrderedDict |
|
from typing import Optional |
|
from PIL import Image |
|
from tabulate import tabulate |
|
|
|
from annotator.oneformer.detectron2.data import MetadataCatalog |
|
from annotator.oneformer.detectron2.utils import comm |
|
from annotator.oneformer.detectron2.utils.file_io import PathManager |
|
|
|
from .evaluator import DatasetEvaluator |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class COCOPanopticEvaluator(DatasetEvaluator): |
|
""" |
|
Evaluate Panoptic Quality metrics on COCO using PanopticAPI. |
|
It saves panoptic segmentation prediction in `output_dir` |
|
|
|
It contains a synchronize call and has to be called from all workers. |
|
""" |
|
|
|
def __init__(self, dataset_name: str, output_dir: Optional[str] = None): |
|
""" |
|
Args: |
|
dataset_name: name of the dataset |
|
output_dir: output directory to save results for evaluation. |
|
""" |
|
self._metadata = MetadataCatalog.get(dataset_name) |
|
self._thing_contiguous_id_to_dataset_id = { |
|
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items() |
|
} |
|
self._stuff_contiguous_id_to_dataset_id = { |
|
v: k for k, v in self._metadata.stuff_dataset_id_to_contiguous_id.items() |
|
} |
|
|
|
self._output_dir = output_dir |
|
if self._output_dir is not None: |
|
PathManager.mkdirs(self._output_dir) |
|
|
|
def reset(self): |
|
self._predictions = [] |
|
|
|
def _convert_category_id(self, segment_info): |
|
isthing = segment_info.pop("isthing", None) |
|
if isthing is None: |
|
|
|
return segment_info |
|
if isthing is True: |
|
segment_info["category_id"] = self._thing_contiguous_id_to_dataset_id[ |
|
segment_info["category_id"] |
|
] |
|
else: |
|
segment_info["category_id"] = self._stuff_contiguous_id_to_dataset_id[ |
|
segment_info["category_id"] |
|
] |
|
return segment_info |
|
|
|
def process(self, inputs, outputs): |
|
from panopticapi.utils import id2rgb |
|
|
|
for input, output in zip(inputs, outputs): |
|
panoptic_img, segments_info = output["panoptic_seg"] |
|
panoptic_img = panoptic_img.cpu().numpy() |
|
if segments_info is None: |
|
|
|
|
|
|
|
|
|
|
|
label_divisor = self._metadata.label_divisor |
|
segments_info = [] |
|
for panoptic_label in np.unique(panoptic_img): |
|
if panoptic_label == -1: |
|
|
|
continue |
|
pred_class = panoptic_label // label_divisor |
|
isthing = ( |
|
pred_class in self._metadata.thing_dataset_id_to_contiguous_id.values() |
|
) |
|
segments_info.append( |
|
{ |
|
"id": int(panoptic_label) + 1, |
|
"category_id": int(pred_class), |
|
"isthing": bool(isthing), |
|
} |
|
) |
|
|
|
panoptic_img += 1 |
|
|
|
file_name = os.path.basename(input["file_name"]) |
|
file_name_png = os.path.splitext(file_name)[0] + ".png" |
|
with io.BytesIO() as out: |
|
Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG") |
|
segments_info = [self._convert_category_id(x) for x in segments_info] |
|
self._predictions.append( |
|
{ |
|
"image_id": input["image_id"], |
|
"file_name": file_name_png, |
|
"png_string": out.getvalue(), |
|
"segments_info": segments_info, |
|
} |
|
) |
|
|
|
def evaluate(self): |
|
comm.synchronize() |
|
|
|
self._predictions = comm.gather(self._predictions) |
|
self._predictions = list(itertools.chain(*self._predictions)) |
|
if not comm.is_main_process(): |
|
return |
|
|
|
|
|
gt_json = PathManager.get_local_path(self._metadata.panoptic_json) |
|
gt_folder = PathManager.get_local_path(self._metadata.panoptic_root) |
|
|
|
with tempfile.TemporaryDirectory(prefix="panoptic_eval") as pred_dir: |
|
logger.info("Writing all panoptic predictions to {} ...".format(pred_dir)) |
|
for p in self._predictions: |
|
with open(os.path.join(pred_dir, p["file_name"]), "wb") as f: |
|
f.write(p.pop("png_string")) |
|
|
|
with open(gt_json, "r") as f: |
|
json_data = json.load(f) |
|
json_data["annotations"] = self._predictions |
|
|
|
output_dir = self._output_dir or pred_dir |
|
predictions_json = os.path.join(output_dir, "predictions.json") |
|
with PathManager.open(predictions_json, "w") as f: |
|
f.write(json.dumps(json_data)) |
|
|
|
from panopticapi.evaluation import pq_compute |
|
|
|
with contextlib.redirect_stdout(io.StringIO()): |
|
pq_res = pq_compute( |
|
gt_json, |
|
PathManager.get_local_path(predictions_json), |
|
gt_folder=gt_folder, |
|
pred_folder=pred_dir, |
|
) |
|
|
|
res = {} |
|
res["PQ"] = 100 * pq_res["All"]["pq"] |
|
res["SQ"] = 100 * pq_res["All"]["sq"] |
|
res["RQ"] = 100 * pq_res["All"]["rq"] |
|
res["PQ_th"] = 100 * pq_res["Things"]["pq"] |
|
res["SQ_th"] = 100 * pq_res["Things"]["sq"] |
|
res["RQ_th"] = 100 * pq_res["Things"]["rq"] |
|
res["PQ_st"] = 100 * pq_res["Stuff"]["pq"] |
|
res["SQ_st"] = 100 * pq_res["Stuff"]["sq"] |
|
res["RQ_st"] = 100 * pq_res["Stuff"]["rq"] |
|
|
|
results = OrderedDict({"panoptic_seg": res}) |
|
_print_panoptic_results(pq_res) |
|
|
|
return results |
|
|
|
|
|
def _print_panoptic_results(pq_res): |
|
headers = ["", "PQ", "SQ", "RQ", "#categories"] |
|
data = [] |
|
for name in ["All", "Things", "Stuff"]: |
|
row = [name] + [pq_res[name][k] * 100 for k in ["pq", "sq", "rq"]] + [pq_res[name]["n"]] |
|
data.append(row) |
|
table = tabulate( |
|
data, headers=headers, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center" |
|
) |
|
logger.info("Panoptic Evaluation Results:\n" + table) |
|
|
|
|
|
if __name__ == "__main__": |
|
from annotator.oneformer.detectron2.utils.logger import setup_logger |
|
|
|
logger = setup_logger() |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--gt-json") |
|
parser.add_argument("--gt-dir") |
|
parser.add_argument("--pred-json") |
|
parser.add_argument("--pred-dir") |
|
args = parser.parse_args() |
|
|
|
from panopticapi.evaluation import pq_compute |
|
|
|
with contextlib.redirect_stdout(io.StringIO()): |
|
pq_res = pq_compute( |
|
args.gt_json, args.pred_json, gt_folder=args.gt_dir, pred_folder=args.pred_dir |
|
) |
|
_print_panoptic_results(pq_res) |
|
|