|
|
|
import logging |
|
import math |
|
from typing import List, Tuple |
|
import torch |
|
from fvcore.nn import sigmoid_focal_loss_jit |
|
from torch import Tensor, nn |
|
from torch.nn import functional as F |
|
|
|
from annotator.oneformer.detectron2.config import configurable |
|
from annotator.oneformer.detectron2.layers import CycleBatchNormList, ShapeSpec, batched_nms, cat, get_norm |
|
from annotator.oneformer.detectron2.structures import Boxes, ImageList, Instances, pairwise_iou |
|
from annotator.oneformer.detectron2.utils.events import get_event_storage |
|
|
|
from ..anchor_generator import build_anchor_generator |
|
from ..backbone import Backbone, build_backbone |
|
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss |
|
from ..matcher import Matcher |
|
from .build import META_ARCH_REGISTRY |
|
from .dense_detector import DenseDetector, permute_to_N_HWA_K |
|
|
|
__all__ = ["RetinaNet"] |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@META_ARCH_REGISTRY.register() |
|
class RetinaNet(DenseDetector): |
|
""" |
|
Implement RetinaNet in :paper:`RetinaNet`. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
backbone: Backbone, |
|
head: nn.Module, |
|
head_in_features, |
|
anchor_generator, |
|
box2box_transform, |
|
anchor_matcher, |
|
num_classes, |
|
focal_loss_alpha=0.25, |
|
focal_loss_gamma=2.0, |
|
smooth_l1_beta=0.0, |
|
box_reg_loss_type="smooth_l1", |
|
test_score_thresh=0.05, |
|
test_topk_candidates=1000, |
|
test_nms_thresh=0.5, |
|
max_detections_per_image=100, |
|
pixel_mean, |
|
pixel_std, |
|
vis_period=0, |
|
input_format="BGR", |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
backbone: a backbone module, must follow detectron2's backbone interface |
|
head (nn.Module): a module that predicts logits and regression deltas |
|
for each level from a list of per-level features |
|
head_in_features (Tuple[str]): Names of the input feature maps to be used in head |
|
anchor_generator (nn.Module): a module that creates anchors from a |
|
list of features. Usually an instance of :class:`AnchorGenerator` |
|
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to |
|
instance boxes |
|
anchor_matcher (Matcher): label the anchors by matching them with ground truth. |
|
num_classes (int): number of classes. Used to label background proposals. |
|
|
|
# Loss parameters: |
|
focal_loss_alpha (float): focal_loss_alpha |
|
focal_loss_gamma (float): focal_loss_gamma |
|
smooth_l1_beta (float): smooth_l1_beta |
|
box_reg_loss_type (str): Options are "smooth_l1", "giou", "diou", "ciou" |
|
|
|
# Inference parameters: |
|
test_score_thresh (float): Inference cls score threshold, only anchors with |
|
score > INFERENCE_TH are considered for inference (to improve speed) |
|
test_topk_candidates (int): Select topk candidates before NMS |
|
test_nms_thresh (float): Overlap threshold used for non-maximum suppression |
|
(suppress boxes with IoU >= this threshold) |
|
max_detections_per_image (int): |
|
Maximum number of detections to return per image during inference |
|
(100 is based on the limit established for the COCO dataset). |
|
|
|
pixel_mean, pixel_std: see :class:`DenseDetector`. |
|
""" |
|
super().__init__( |
|
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std |
|
) |
|
self.num_classes = num_classes |
|
|
|
|
|
self.anchor_generator = anchor_generator |
|
self.box2box_transform = box2box_transform |
|
self.anchor_matcher = anchor_matcher |
|
|
|
|
|
self.focal_loss_alpha = focal_loss_alpha |
|
self.focal_loss_gamma = focal_loss_gamma |
|
self.smooth_l1_beta = smooth_l1_beta |
|
self.box_reg_loss_type = box_reg_loss_type |
|
|
|
self.test_score_thresh = test_score_thresh |
|
self.test_topk_candidates = test_topk_candidates |
|
self.test_nms_thresh = test_nms_thresh |
|
self.max_detections_per_image = max_detections_per_image |
|
|
|
self.vis_period = vis_period |
|
self.input_format = input_format |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
backbone = build_backbone(cfg) |
|
backbone_shape = backbone.output_shape() |
|
feature_shapes = [backbone_shape[f] for f in cfg.MODEL.RETINANET.IN_FEATURES] |
|
head = RetinaNetHead(cfg, feature_shapes) |
|
anchor_generator = build_anchor_generator(cfg, feature_shapes) |
|
return { |
|
"backbone": backbone, |
|
"head": head, |
|
"anchor_generator": anchor_generator, |
|
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RETINANET.BBOX_REG_WEIGHTS), |
|
"anchor_matcher": Matcher( |
|
cfg.MODEL.RETINANET.IOU_THRESHOLDS, |
|
cfg.MODEL.RETINANET.IOU_LABELS, |
|
allow_low_quality_matches=True, |
|
), |
|
"pixel_mean": cfg.MODEL.PIXEL_MEAN, |
|
"pixel_std": cfg.MODEL.PIXEL_STD, |
|
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, |
|
"head_in_features": cfg.MODEL.RETINANET.IN_FEATURES, |
|
|
|
"focal_loss_alpha": cfg.MODEL.RETINANET.FOCAL_LOSS_ALPHA, |
|
"focal_loss_gamma": cfg.MODEL.RETINANET.FOCAL_LOSS_GAMMA, |
|
"smooth_l1_beta": cfg.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA, |
|
"box_reg_loss_type": cfg.MODEL.RETINANET.BBOX_REG_LOSS_TYPE, |
|
|
|
"test_score_thresh": cfg.MODEL.RETINANET.SCORE_THRESH_TEST, |
|
"test_topk_candidates": cfg.MODEL.RETINANET.TOPK_CANDIDATES_TEST, |
|
"test_nms_thresh": cfg.MODEL.RETINANET.NMS_THRESH_TEST, |
|
"max_detections_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, |
|
|
|
"vis_period": cfg.VIS_PERIOD, |
|
"input_format": cfg.INPUT.FORMAT, |
|
} |
|
|
|
def forward_training(self, images, features, predictions, gt_instances): |
|
|
|
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( |
|
predictions, [self.num_classes, 4] |
|
) |
|
anchors = self.anchor_generator(features) |
|
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) |
|
return self.losses(anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes) |
|
|
|
def losses(self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes): |
|
""" |
|
Args: |
|
anchors (list[Boxes]): a list of #feature level Boxes |
|
gt_labels, gt_boxes: see output of :meth:`RetinaNet.label_anchors`. |
|
Their shapes are (N, R) and (N, R, 4), respectively, where R is |
|
the total number of anchors across levels, i.e. sum(Hi x Wi x Ai) |
|
pred_logits, pred_anchor_deltas: both are list[Tensor]. Each element in the |
|
list corresponds to one level and has shape (N, Hi * Wi * Ai, K or 4). |
|
Where K is the number of classes used in `pred_logits`. |
|
|
|
Returns: |
|
dict[str, Tensor]: |
|
mapping from a named loss to a scalar tensor storing the loss. |
|
Used during training only. The dict keys are: "loss_cls" and "loss_box_reg" |
|
""" |
|
num_images = len(gt_labels) |
|
gt_labels = torch.stack(gt_labels) |
|
|
|
valid_mask = gt_labels >= 0 |
|
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) |
|
num_pos_anchors = pos_mask.sum().item() |
|
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) |
|
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 100) |
|
|
|
|
|
gt_labels_target = F.one_hot(gt_labels[valid_mask], num_classes=self.num_classes + 1)[ |
|
:, :-1 |
|
] |
|
loss_cls = sigmoid_focal_loss_jit( |
|
cat(pred_logits, dim=1)[valid_mask], |
|
gt_labels_target.to(pred_logits[0].dtype), |
|
alpha=self.focal_loss_alpha, |
|
gamma=self.focal_loss_gamma, |
|
reduction="sum", |
|
) |
|
|
|
loss_box_reg = _dense_box_regression_loss( |
|
anchors, |
|
self.box2box_transform, |
|
pred_anchor_deltas, |
|
gt_boxes, |
|
pos_mask, |
|
box_reg_loss_type=self.box_reg_loss_type, |
|
smooth_l1_beta=self.smooth_l1_beta, |
|
) |
|
|
|
return { |
|
"loss_cls": loss_cls / normalizer, |
|
"loss_box_reg": loss_box_reg / normalizer, |
|
} |
|
|
|
@torch.no_grad() |
|
def label_anchors(self, anchors, gt_instances): |
|
""" |
|
Args: |
|
anchors (list[Boxes]): A list of #feature level Boxes. |
|
The Boxes contains anchors of this image on the specific feature level. |
|
gt_instances (list[Instances]): a list of N `Instances`s. The i-th |
|
`Instances` contains the ground-truth per-instance annotations |
|
for the i-th input image. |
|
|
|
Returns: |
|
list[Tensor]: List of #img tensors. i-th element is a vector of labels whose length is |
|
the total number of anchors across all feature maps (sum(Hi * Wi * A)). |
|
Label values are in {-1, 0, ..., K}, with -1 means ignore, and K means background. |
|
|
|
list[Tensor]: i-th element is a Rx4 tensor, where R is the total number of anchors |
|
across feature maps. The values are the matched gt boxes for each anchor. |
|
Values are undefined for those anchors not labeled as foreground. |
|
""" |
|
anchors = Boxes.cat(anchors) |
|
|
|
gt_labels = [] |
|
matched_gt_boxes = [] |
|
for gt_per_image in gt_instances: |
|
match_quality_matrix = pairwise_iou(gt_per_image.gt_boxes, anchors) |
|
matched_idxs, anchor_labels = self.anchor_matcher(match_quality_matrix) |
|
del match_quality_matrix |
|
|
|
if len(gt_per_image) > 0: |
|
matched_gt_boxes_i = gt_per_image.gt_boxes.tensor[matched_idxs] |
|
|
|
gt_labels_i = gt_per_image.gt_classes[matched_idxs] |
|
|
|
gt_labels_i[anchor_labels == 0] = self.num_classes |
|
|
|
gt_labels_i[anchor_labels == -1] = -1 |
|
else: |
|
matched_gt_boxes_i = torch.zeros_like(anchors.tensor) |
|
gt_labels_i = torch.zeros_like(matched_idxs) + self.num_classes |
|
|
|
gt_labels.append(gt_labels_i) |
|
matched_gt_boxes.append(matched_gt_boxes_i) |
|
|
|
return gt_labels, matched_gt_boxes |
|
|
|
def forward_inference( |
|
self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]] |
|
): |
|
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions( |
|
predictions, [self.num_classes, 4] |
|
) |
|
anchors = self.anchor_generator(features) |
|
|
|
results: List[Instances] = [] |
|
for img_idx, image_size in enumerate(images.image_sizes): |
|
scores_per_image = [x[img_idx].sigmoid_() for x in pred_logits] |
|
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] |
|
results_per_image = self.inference_single_image( |
|
anchors, scores_per_image, deltas_per_image, image_size |
|
) |
|
results.append(results_per_image) |
|
return results |
|
|
|
def inference_single_image( |
|
self, |
|
anchors: List[Boxes], |
|
box_cls: List[Tensor], |
|
box_delta: List[Tensor], |
|
image_size: Tuple[int, int], |
|
): |
|
""" |
|
Single-image inference. Return bounding-box detection results by thresholding |
|
on scores and applying non-maximum suppression (NMS). |
|
|
|
Arguments: |
|
anchors (list[Boxes]): list of #feature levels. Each entry contains |
|
a Boxes object, which contains all the anchors in that feature level. |
|
box_cls (list[Tensor]): list of #feature levels. Each entry contains |
|
tensor of size (H x W x A, K) |
|
box_delta (list[Tensor]): Same shape as 'box_cls' except that K becomes 4. |
|
image_size (tuple(H, W)): a tuple of the image height and width. |
|
|
|
Returns: |
|
Same as `inference`, but for only one image. |
|
""" |
|
pred = self._decode_multi_level_predictions( |
|
anchors, |
|
box_cls, |
|
box_delta, |
|
self.test_score_thresh, |
|
self.test_topk_candidates, |
|
image_size, |
|
) |
|
keep = batched_nms( |
|
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh |
|
) |
|
return pred[keep[: self.max_detections_per_image]] |
|
|
|
|
|
class RetinaNetHead(nn.Module): |
|
""" |
|
The head used in RetinaNet for object classification and box regression. |
|
It has two subnets for the two tasks, with a common structure but separate parameters. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
input_shape: List[ShapeSpec], |
|
num_classes, |
|
num_anchors, |
|
conv_dims: List[int], |
|
norm="", |
|
prior_prob=0.01, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
input_shape (List[ShapeSpec]): input shape |
|
num_classes (int): number of classes. Used to label background proposals. |
|
num_anchors (int): number of generated anchors |
|
conv_dims (List[int]): dimensions for each convolution layer |
|
norm (str or callable): |
|
Normalization for conv layers except for the two output layers. |
|
See :func:`detectron2.layers.get_norm` for supported types. |
|
prior_prob (float): Prior weight for computing bias |
|
""" |
|
super().__init__() |
|
|
|
self._num_features = len(input_shape) |
|
if norm == "BN" or norm == "SyncBN": |
|
logger.info( |
|
f"Using domain-specific {norm} in RetinaNetHead with len={self._num_features}." |
|
) |
|
bn_class = nn.BatchNorm2d if norm == "BN" else nn.SyncBatchNorm |
|
|
|
def norm(c): |
|
return CycleBatchNormList( |
|
length=self._num_features, bn_class=bn_class, num_features=c |
|
) |
|
|
|
else: |
|
norm_name = str(type(get_norm(norm, 32))) |
|
if "BN" in norm_name: |
|
logger.warning( |
|
f"Shared BatchNorm (type={norm_name}) may not work well in RetinaNetHead." |
|
) |
|
|
|
cls_subnet = [] |
|
bbox_subnet = [] |
|
for in_channels, out_channels in zip( |
|
[input_shape[0].channels] + list(conv_dims), conv_dims |
|
): |
|
cls_subnet.append( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
) |
|
if norm: |
|
cls_subnet.append(get_norm(norm, out_channels)) |
|
cls_subnet.append(nn.ReLU()) |
|
bbox_subnet.append( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
) |
|
if norm: |
|
bbox_subnet.append(get_norm(norm, out_channels)) |
|
bbox_subnet.append(nn.ReLU()) |
|
|
|
self.cls_subnet = nn.Sequential(*cls_subnet) |
|
self.bbox_subnet = nn.Sequential(*bbox_subnet) |
|
self.cls_score = nn.Conv2d( |
|
conv_dims[-1], num_anchors * num_classes, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.bbox_pred = nn.Conv2d( |
|
conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
for modules in [self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred]: |
|
for layer in modules.modules(): |
|
if isinstance(layer, nn.Conv2d): |
|
torch.nn.init.normal_(layer.weight, mean=0, std=0.01) |
|
torch.nn.init.constant_(layer.bias, 0) |
|
|
|
|
|
bias_value = -(math.log((1 - prior_prob) / prior_prob)) |
|
torch.nn.init.constant_(self.cls_score.bias, bias_value) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: List[ShapeSpec]): |
|
num_anchors = build_anchor_generator(cfg, input_shape).num_cell_anchors |
|
assert ( |
|
len(set(num_anchors)) == 1 |
|
), "Using different number of anchors between levels is not currently supported!" |
|
num_anchors = num_anchors[0] |
|
|
|
return { |
|
"input_shape": input_shape, |
|
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES, |
|
"conv_dims": [input_shape[0].channels] * cfg.MODEL.RETINANET.NUM_CONVS, |
|
"prior_prob": cfg.MODEL.RETINANET.PRIOR_PROB, |
|
"norm": cfg.MODEL.RETINANET.NORM, |
|
"num_anchors": num_anchors, |
|
} |
|
|
|
def forward(self, features: List[Tensor]): |
|
""" |
|
Arguments: |
|
features (list[Tensor]): FPN feature map tensors in high to low resolution. |
|
Each tensor in the list correspond to different feature levels. |
|
|
|
Returns: |
|
logits (list[Tensor]): #lvl tensors, each has shape (N, AxK, Hi, Wi). |
|
The tensor predicts the classification probability |
|
at each spatial position for each of the A anchors and K object |
|
classes. |
|
bbox_reg (list[Tensor]): #lvl tensors, each has shape (N, Ax4, Hi, Wi). |
|
The tensor predicts 4-vector (dx,dy,dw,dh) box |
|
regression values for every anchor. These values are the |
|
relative offset between the anchor and the ground truth box. |
|
""" |
|
assert len(features) == self._num_features |
|
logits = [] |
|
bbox_reg = [] |
|
for feature in features: |
|
logits.append(self.cls_score(self.cls_subnet(feature))) |
|
bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature))) |
|
return logits, bbox_reg |
|
|