|
|
|
import copy |
|
import numpy as np |
|
from contextlib import contextmanager |
|
from itertools import count |
|
from typing import List |
|
import torch |
|
from fvcore.transforms import HFlipTransform, NoOpTransform |
|
from torch import nn |
|
from torch.nn.parallel import DistributedDataParallel |
|
|
|
from annotator.oneformer.detectron2.config import configurable |
|
from annotator.oneformer.detectron2.data.detection_utils import read_image |
|
from annotator.oneformer.detectron2.data.transforms import ( |
|
RandomFlip, |
|
ResizeShortestEdge, |
|
ResizeTransform, |
|
apply_augmentations, |
|
) |
|
from annotator.oneformer.detectron2.structures import Boxes, Instances |
|
|
|
from .meta_arch import GeneralizedRCNN |
|
from .postprocessing import detector_postprocess |
|
from .roi_heads.fast_rcnn import fast_rcnn_inference_single_image |
|
|
|
__all__ = ["DatasetMapperTTA", "GeneralizedRCNNWithTTA"] |
|
|
|
|
|
class DatasetMapperTTA: |
|
""" |
|
Implement test-time augmentation for detection data. |
|
It is a callable which takes a dataset dict from a detection dataset, |
|
and returns a list of dataset dicts where the images |
|
are augmented from the input image by the transformations defined in the config. |
|
This is used for test-time augmentation. |
|
""" |
|
|
|
@configurable |
|
def __init__(self, min_sizes: List[int], max_size: int, flip: bool): |
|
""" |
|
Args: |
|
min_sizes: list of short-edge size to resize the image to |
|
max_size: maximum height or width of resized images |
|
flip: whether to apply flipping augmentation |
|
""" |
|
self.min_sizes = min_sizes |
|
self.max_size = max_size |
|
self.flip = flip |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
return { |
|
"min_sizes": cfg.TEST.AUG.MIN_SIZES, |
|
"max_size": cfg.TEST.AUG.MAX_SIZE, |
|
"flip": cfg.TEST.AUG.FLIP, |
|
} |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dict: a dict in standard model input format. See tutorials for details. |
|
|
|
Returns: |
|
list[dict]: |
|
a list of dicts, which contain augmented version of the input image. |
|
The total number of dicts is ``len(min_sizes) * (2 if flip else 1)``. |
|
Each dict has field "transforms" which is a TransformList, |
|
containing the transforms that are used to generate this image. |
|
""" |
|
numpy_image = dataset_dict["image"].permute(1, 2, 0).numpy() |
|
shape = numpy_image.shape |
|
orig_shape = (dataset_dict["height"], dataset_dict["width"]) |
|
if shape[:2] != orig_shape: |
|
|
|
pre_tfm = ResizeTransform(orig_shape[0], orig_shape[1], shape[0], shape[1]) |
|
else: |
|
pre_tfm = NoOpTransform() |
|
|
|
|
|
aug_candidates = [] |
|
for min_size in self.min_sizes: |
|
resize = ResizeShortestEdge(min_size, self.max_size) |
|
aug_candidates.append([resize]) |
|
if self.flip: |
|
flip = RandomFlip(prob=1.0) |
|
aug_candidates.append([resize, flip]) |
|
|
|
|
|
ret = [] |
|
for aug in aug_candidates: |
|
new_image, tfms = apply_augmentations(aug, np.copy(numpy_image)) |
|
torch_image = torch.from_numpy(np.ascontiguousarray(new_image.transpose(2, 0, 1))) |
|
|
|
dic = copy.deepcopy(dataset_dict) |
|
dic["transforms"] = pre_tfm + tfms |
|
dic["image"] = torch_image |
|
ret.append(dic) |
|
return ret |
|
|
|
|
|
class GeneralizedRCNNWithTTA(nn.Module): |
|
""" |
|
A GeneralizedRCNN with test-time augmentation enabled. |
|
Its :meth:`__call__` method has the same interface as :meth:`GeneralizedRCNN.forward`. |
|
""" |
|
|
|
def __init__(self, cfg, model, tta_mapper=None, batch_size=3): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
model (GeneralizedRCNN): a GeneralizedRCNN to apply TTA on. |
|
tta_mapper (callable): takes a dataset dict and returns a list of |
|
augmented versions of the dataset dict. Defaults to |
|
`DatasetMapperTTA(cfg)`. |
|
batch_size (int): batch the augmented images into this batch size for inference. |
|
""" |
|
super().__init__() |
|
if isinstance(model, DistributedDataParallel): |
|
model = model.module |
|
assert isinstance( |
|
model, GeneralizedRCNN |
|
), "TTA is only supported on GeneralizedRCNN. Got a model of type {}".format(type(model)) |
|
self.cfg = cfg.clone() |
|
assert not self.cfg.MODEL.KEYPOINT_ON, "TTA for keypoint is not supported yet" |
|
assert ( |
|
not self.cfg.MODEL.LOAD_PROPOSALS |
|
), "TTA for pre-computed proposals is not supported yet" |
|
|
|
self.model = model |
|
|
|
if tta_mapper is None: |
|
tta_mapper = DatasetMapperTTA(cfg) |
|
self.tta_mapper = tta_mapper |
|
self.batch_size = batch_size |
|
|
|
@contextmanager |
|
def _turn_off_roi_heads(self, attrs): |
|
""" |
|
Open a context where some heads in `model.roi_heads` are temporarily turned off. |
|
Args: |
|
attr (list[str]): the attribute in `model.roi_heads` which can be used |
|
to turn off a specific head, e.g., "mask_on", "keypoint_on". |
|
""" |
|
roi_heads = self.model.roi_heads |
|
old = {} |
|
for attr in attrs: |
|
try: |
|
old[attr] = getattr(roi_heads, attr) |
|
except AttributeError: |
|
|
|
pass |
|
|
|
if len(old.keys()) == 0: |
|
yield |
|
else: |
|
for attr in old.keys(): |
|
setattr(roi_heads, attr, False) |
|
yield |
|
for attr in old.keys(): |
|
setattr(roi_heads, attr, old[attr]) |
|
|
|
def _batch_inference(self, batched_inputs, detected_instances=None): |
|
""" |
|
Execute inference on a list of inputs, |
|
using batch size = self.batch_size, instead of the length of the list. |
|
|
|
Inputs & outputs have the same format as :meth:`GeneralizedRCNN.inference` |
|
""" |
|
if detected_instances is None: |
|
detected_instances = [None] * len(batched_inputs) |
|
|
|
outputs = [] |
|
inputs, instances = [], [] |
|
for idx, input, instance in zip(count(), batched_inputs, detected_instances): |
|
inputs.append(input) |
|
instances.append(instance) |
|
if len(inputs) == self.batch_size or idx == len(batched_inputs) - 1: |
|
outputs.extend( |
|
self.model.inference( |
|
inputs, |
|
instances if instances[0] is not None else None, |
|
do_postprocess=False, |
|
) |
|
) |
|
inputs, instances = [], [] |
|
return outputs |
|
|
|
def __call__(self, batched_inputs): |
|
""" |
|
Same input/output format as :meth:`GeneralizedRCNN.forward` |
|
""" |
|
|
|
def _maybe_read_image(dataset_dict): |
|
ret = copy.copy(dataset_dict) |
|
if "image" not in ret: |
|
image = read_image(ret.pop("file_name"), self.model.input_format) |
|
image = torch.from_numpy(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
ret["image"] = image |
|
if "height" not in ret and "width" not in ret: |
|
ret["height"] = image.shape[1] |
|
ret["width"] = image.shape[2] |
|
return ret |
|
|
|
return [self._inference_one_image(_maybe_read_image(x)) for x in batched_inputs] |
|
|
|
def _inference_one_image(self, input): |
|
""" |
|
Args: |
|
input (dict): one dataset dict with "image" field being a CHW tensor |
|
|
|
Returns: |
|
dict: one output dict |
|
""" |
|
orig_shape = (input["height"], input["width"]) |
|
augmented_inputs, tfms = self._get_augmented_inputs(input) |
|
|
|
with self._turn_off_roi_heads(["mask_on", "keypoint_on"]): |
|
|
|
all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms) |
|
|
|
merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape) |
|
|
|
if self.cfg.MODEL.MASK_ON: |
|
|
|
augmented_instances = self._rescale_detected_boxes( |
|
augmented_inputs, merged_instances, tfms |
|
) |
|
|
|
outputs = self._batch_inference(augmented_inputs, augmented_instances) |
|
|
|
del augmented_inputs, augmented_instances |
|
|
|
merged_instances.pred_masks = self._reduce_pred_masks(outputs, tfms) |
|
merged_instances = detector_postprocess(merged_instances, *orig_shape) |
|
return {"instances": merged_instances} |
|
else: |
|
return {"instances": merged_instances} |
|
|
|
def _get_augmented_inputs(self, input): |
|
augmented_inputs = self.tta_mapper(input) |
|
tfms = [x.pop("transforms") for x in augmented_inputs] |
|
return augmented_inputs, tfms |
|
|
|
def _get_augmented_boxes(self, augmented_inputs, tfms): |
|
|
|
outputs = self._batch_inference(augmented_inputs) |
|
|
|
all_boxes = [] |
|
all_scores = [] |
|
all_classes = [] |
|
for output, tfm in zip(outputs, tfms): |
|
|
|
pred_boxes = output.pred_boxes.tensor |
|
original_pred_boxes = tfm.inverse().apply_box(pred_boxes.cpu().numpy()) |
|
all_boxes.append(torch.from_numpy(original_pred_boxes).to(pred_boxes.device)) |
|
|
|
all_scores.extend(output.scores) |
|
all_classes.extend(output.pred_classes) |
|
all_boxes = torch.cat(all_boxes, dim=0) |
|
return all_boxes, all_scores, all_classes |
|
|
|
def _merge_detections(self, all_boxes, all_scores, all_classes, shape_hw): |
|
|
|
num_boxes = len(all_boxes) |
|
num_classes = self.cfg.MODEL.ROI_HEADS.NUM_CLASSES |
|
|
|
all_scores_2d = torch.zeros(num_boxes, num_classes + 1, device=all_boxes.device) |
|
for idx, cls, score in zip(count(), all_classes, all_scores): |
|
all_scores_2d[idx, cls] = score |
|
|
|
merged_instances, _ = fast_rcnn_inference_single_image( |
|
all_boxes, |
|
all_scores_2d, |
|
shape_hw, |
|
1e-8, |
|
self.cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST, |
|
self.cfg.TEST.DETECTIONS_PER_IMAGE, |
|
) |
|
|
|
return merged_instances |
|
|
|
def _rescale_detected_boxes(self, augmented_inputs, merged_instances, tfms): |
|
augmented_instances = [] |
|
for input, tfm in zip(augmented_inputs, tfms): |
|
|
|
pred_boxes = merged_instances.pred_boxes.tensor.cpu().numpy() |
|
pred_boxes = torch.from_numpy(tfm.apply_box(pred_boxes)) |
|
|
|
aug_instances = Instances( |
|
image_size=input["image"].shape[1:3], |
|
pred_boxes=Boxes(pred_boxes), |
|
pred_classes=merged_instances.pred_classes, |
|
scores=merged_instances.scores, |
|
) |
|
augmented_instances.append(aug_instances) |
|
return augmented_instances |
|
|
|
def _reduce_pred_masks(self, outputs, tfms): |
|
|
|
|
|
|
|
for output, tfm in zip(outputs, tfms): |
|
if any(isinstance(t, HFlipTransform) for t in tfm.transforms): |
|
output.pred_masks = output.pred_masks.flip(dims=[3]) |
|
all_pred_masks = torch.stack([o.pred_masks for o in outputs], dim=0) |
|
avg_pred_masks = torch.mean(all_pred_masks, dim=0) |
|
return avg_pred_masks |
|
|