What is Semantic and Episodic Memory?

#5
by awacke1 - opened

What is Semantic and Episodic memory?

Advanced Settings

LLM Answer
Semantic memory and episodic memory are two types of memory systems in human cognition. According to the theory of complementary learning systems (McClelland et al., 1995), episodic memory is responsible for storing and retrieving specific events or episodes, while semantic memory is responsible for storing and retrieving general knowledge and concepts.

Episodic memory is often described as a form of memory that allows us to remember specific events or episodes in our past, including the context and details of the event (Kanerva++, 2021). It is sometimes referred to as "episodic encoding" or "episodic representation."

Semantic memory, on the other hand, is a form of memory that allows us to store and retrieve general knowledge and concepts, such as facts, meanings, and concepts (A model of semantic completion in generative episodic memory, 2021). It is sometimes referred to as "semantic encoding" or "semantic representation."

The Tensor Memory Hypothesis (2021) proposes that perception, episodic memory, and semantic memory can be realized using tensor decompositions and latent representations of entities and events. In this framework, episodic memory and semantic memory depend on the same decoding process, and perception includes an active semantic decoding process.

The Tensor Brain (2021) presents a unified computational theory of an agent's perception and memory, where perception, episodic memory, and semantic memory are realized by different operational modes of a bilayer tensor network. In this model, episodic memory provides the agent with a sense of the present and recent past, while semantic memory retrieves specific information and defines priors for future observations.

In summary, episodic memory is the memory system responsible for storing and retrieving specific events or episodes, while semantic memory is the memory system responsible for storing and retrieving general knowledge and concepts. These two memory systems are complementary and interact with each other to support the agent's perception and memory processes. (References: Kanerva++, 2021; A model of semantic completion in generative episodic memory, 2021; The Tensor Memory Hypothesis, 2021; The Tensor Brain,
🩺🔍 Search Results
07 Feb 2022 |
Kanerva++: extending The Kanerva Machine with differentiable, locally block allocated latent memory
|
⬇️
Jason Ramapuram, Yan Wu, Alexandros Kalousis

Episodic and semantic memory are critical components of the human memory model. The theory of complementary learning systems (McClelland et al., 1995) suggests that the compressed representation produced by a serial event (episodic memory) is later restructured to build a more generalized form of reusable knowledge (semantic memory). In this work we develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory via a hierarchical latent variable model. We take inspiration from traditional heap allocation and extend the idea of locally contiguous memory to the Kanerva Machine, enabling a novel differentiable block allocated latent memory. In contrast to the Kanerva Machine, we simplify the process of memory writing by treating it as a fully feed forward deterministic process, relying on the stochasticity of the read key distribution to disperse information within the memory. We demonstrate that this allocation scheme improves performance in memory conditional image generation, resulting in new state-of-the-art conditional likelihood values on binarized MNIST (<=41.58 nats/image) , binarized Omniglot (<=66.24 nats/image), as well as presenting competitive performance on CIFAR10, DMLab Mazes, Celeb-A and ImageNet32x32.

26 Nov 2021 |
A model of semantic completion in generative episodic memory
|
⬇️
Zahra Fayyaz, Aya Altamimi, Sen Cheng, Laurenz Wiskott

Many different studies have suggested that episodic memory is a generative process, but most computational models adopt a storage view. In this work, we propose a computational model for generative episodic memory. It is based on the central hypothesis that the hippocampus stores and retrieves selected aspects of an episode as a memory trace, which is necessarily incomplete. At recall, the neocortex reasonably fills in the missing information based on general semantic information in a process we call semantic completion. As episodes we use images of digits (MNIST) augmented by different backgrounds representing context. Our model is based on a VQ-VAE which generates a compressed latent representation in form of an index matrix, which still has some spatial resolution. We assume that attention selects some part of the index matrix while others are discarded, this then represents the gist of the episode and is stored as a memory trace. At recall the missing parts are filled in by a PixelCNN, modeling semantic completion, and the completed index matrix is then decoded into a full image by the VQ-VAE. The model is able to complete missing parts of a memory trace in a semantically plausible way up to the point where it can generate plausible images from scratch. Due to the combinatorics in the index matrix, the model generalizes well to images not trained on. Compression as well as semantic completion contribute to a strong reduction in memory requirements and robustness to noise. Finally we also model an episodic memory experiment and can reproduce that semantically congruent contexts are always recalled better than incongruent ones, high attention levels improve memory accuracy in both cases, and contexts that are not remembered correctly are more often remembered semantically congruently than completely wrong.

28 Aug 2017 |
The Tensor Memory Hypothesis
|
⬇️
Volker Tresp and Yunpu Ma

We discuss memory models which are based on tensor decompositions using latent representations of entities and events. We show how episodic memory and semantic memory can be realized and discuss how new memory traces can be generated from sensory input: Existing memories are the basis for perception and new memories are generated via perception. We relate our mathematical approach to the hippocampal memory indexing theory. We describe the first detailed mathematical models for the complete processing pipeline from sensory input and its semantic decoding, i.e., perception, to the formation of episodic and semantic memories and their declarative semantic decodings. Our main hypothesis is that perception includes an active semantic decoding process, which relies on latent representations of entities and predicates, and that episodic and semantic memories depend on the same decoding process. We contribute to the debate between the leading memory consolidation theories, i.e., the standard consolidation theory (SCT) and the multiple trace theory (MTT). The latter is closely related to the complementary learning systems (CLS) framework. In particular, we show explicitly how episodic memory can teach the neocortex to form a semantic memory, which is a core issue in MTT and CLS.

22 Jan 2023 |
The Tensor Brain: A Unified Theory of Perception, Memory and Semantic Decoding
|
⬇️
Volker Tresp, Sahand Sharifzadeh, Hang Li, Dario Konopatzki, Yunpu Ma

We present a unified computational theory of an agent's perception and memory. In our model, perception, episodic memory, and semantic memory are realized by different operational modes of the oscillating interactions between a symbolic index layer and a subsymbolic representation layer. The two layers form a bilayer tensor network (BTN). Although memory appears to be about the past, its main purpose is to support the agent in the present and the future. Recent episodic memory provides the agent with a sense of the here and now. Remote episodic memory retrieves relevant past experiences to provide information about possible future scenarios. This aids the agent in decision-making. "Future" episodic memory, based on expected future events, guides planning and action. Semantic memory retrieves specific information, which is not delivered by current perception, and defines priors for future observations. We argue that it is important for the agent to encode individual entities, not just classes and attributes. We demonstrate that a form of self-supervised learning can acquire new concepts and refine existing ones. We test our model on a standard benchmark data set, which we expanded to contain richer representations for attributes, classes, and individuals. Our key hypothesis is that obtaining a better understanding of perception and memory is a crucial prerequisite to comprehending human-level intelligence.

19 Dec 2018 |
Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization
|
⬇️
German I. Parisi, Jun Tani, Cornelius Weber, Stefan Wermter

Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenarios

24 Mar 2009 |
Switcher-random-walks: a cognitive-inspired mechanism for network exploration
|
⬇️
Joaqu'in Goni, Inigo Martincorena, Bernat Corominas-Murtra, Gonzalo Arrondo, Sergio Ardanza-Trevijano, Pablo Villoslada

Semantic memory is the subsystem of human memory that stores knowledge of concepts or meanings, as opposed to life specific experiences. The organization of concepts within semantic memory can be understood as a semantic network, where the concepts (nodes) are associated (linked) to others depending on perceptions, similarities, etc. Lexical access is the complementary part of this system and allows the retrieval of such organized knowledge. While conceptual information is stored under certain underlying organization (and thus gives rise to a specific topology), it is crucial to have an accurate access to any of the information units, e.g. the concepts, for efficiently retrieving semantic information for real-time needings. An example of an information retrieval process occurs in verbal fluency tasks, and it is known to involve two different mechanisms: -clustering-, or generating words within a subcategory, and, when a subcategory is exhausted, -switching- to a new subcategory. We extended this approach to random-walking on a network (clustering) in combination to jumping (switching) to any node with certain probability and derived its analytical expression based on Markov chains. Results show that this dual mechanism contributes to optimize the exploration of different network models in terms of the mean first passage time. Additionally, this cognitive inspired dual mechanism opens a new framework to better understand and evaluate exploration, propagation and transport phenomena in other complex systems where switching-like phenomena are feasible.

01 Jun 2018 |
Integrating Episodic Memory into a Reinforcement Learning Agent using Reservoir Sampling
|
⬇️
Kenny J. Young, Richard S. Sutton, Shuo Yang

Episodic memory is a psychology term which refers to the ability to recall specific events from the past. We suggest one advantage of this particular type of memory is the ability to easily assign credit to a specific state when remembered information is found to be useful. Inspired by this idea, and the increasing popularity of external memory mechanisms to handle long-term dependencies in deep learning systems, we propose a novel algorithm which uses a reservoir sampling procedure to maintain an external memory consisting of a fixed number of past states. The algorithm allows a deep reinforcement learning agent to learn online to preferentially remember those states which are found to be useful to recall later on. Critically this method allows for efficient online computation of gradient estimates with respect to the write process of the external memory. Thus unlike most prior mechanisms for external memory it is feasible to use in an online reinforcement learning setting.

21 Oct 2017 |
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
|
⬇️
Rod Rinkus, Jasmin Leveille

The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.

07 May 2016 |
Learning with Memory Embeddings
|
⬇️
Volker Tresp and Crist'obal Esteban and Yinchong Yang and Stephan Baier and Denis Krompa{\ss}

Embedding learning, a.k.a. representation learning, has been shown to be able to model large-scale semantic knowledge graphs. A key concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted by models using latent representations of generalized entities. Latent variable models are well suited to deal with the high dimensionality and sparsity of typical knowledge graphs. In recent publications the embedding models were extended to also consider time evolutions, time patterns and subsymbolic representations. In this paper we map embedding models, which were developed purely as solutions to technical problems for modelling temporal knowledge graphs, to various cognitive memory functions, in particular to semantic and concept memory, episodic memory, sensory memory, short-term memory, and working memory. We discuss learning, query answering, the path from sensory input to semantic decoding, and the relationship between episodic memory and semantic memory. We introduce a number of hypotheses on human memory that can be derived from the developed mathematical models.

09 Aug 2018 |
Is prioritized sweeping the better episodic control?
|
⬇️
Johanni Brea

Episodic control has been proposed as a third approach to reinforcement learning, besides model-free and model-based control, by analogy with the three types of human memory. i.e. episodic, procedural and semantic memory. But the theoretical properties of episodic control are not well investigated. Here I show that in deterministic tree Markov decision processes, episodic control is equivalent to a form of prioritized sweeping in terms of sample efficiency as well as memory and computation demands. For general deterministic and stochastic environments, prioritized sweeping performs better even when memory and computation demands are restricted to be equal to those of episodic control. These results suggest generalizations of prioritized sweeping to partially observable environments, its combined use with function approximation and the search for possible implementations of prioritized sweeping in brains.

08 Jul 2023 |
A Machine with Short-Term, Episodic, and Semantic Memory Systems
|
⬇️
Taewoon Kim, Michael Cochez, Vincent Fran\c{c}ois-Lavet, Mark Neerincx, Piek Vossen

Inspired by the cognitive science theory of the explicit human memory systems, we have modeled an agent with short-term, episodic, and semantic memory systems, each of which is modeled with a knowledge graph. To evaluate this system and analyze the behavior of this agent, we designed and released our own reinforcement learning agent environment, "the Room", where an agent has to learn how to encode, store, and retrieve memories to maximize its return by answering questions. We show that our deep Q-learning based agent successfully learns whether a short-term memory should be forgotten, or rather be stored in the episodic or semantic memory systems. Our experiments indicate that an agent with human-like memory systems can outperform an agent without this memory structure in the environment.

03 Dec 2018 |
Embedding Models for Episodic Knowledge Graphs
|
⬇️
Yunpu Ma, Volker Tresp, Erik Daxberger

In recent years a number of large-scale triple-oriented knowledge graphs have been generated and various models have been proposed to perform learning in those graphs. Most knowledge graphs are static and reflect the world in its current state. In reality, of course, the state of the world is changing: a healthy person becomes diagnosed with a disease and a new president is inaugurated. In this paper, we extend models for static knowledge graphs to temporal knowledge graphs. This enables us to store episodic data and to generalize to new facts (inductive learning). We generalize leading learning models for static knowledge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal knowledge graphs. In particular, we introduce a new tensor model, ConT, with superior generalization performance. The performances of all proposed models are analyzed on two different datasets: the Global Database of Events, Language, and Tone (GDELT) and the database for Integrated Conflict Early Warning System (ICEWS). We argue that temporal knowledge graph embeddings might be models also for cognitive episodic memory (facts we remember and can recollect) and that a semantic memory (current facts we know) can be generated from episodic memory by a marginalization operation. We validate this episodic-to-semantic projection hypothesis with the ICEWS dataset.

26 Feb 2024 |
PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Synthesis in Question Answering
|
⬇️
Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong Wang, Kam-Fai Wong

Long-term memory plays a critical role in personal interaction, considering long-term memory can better leverage world knowledge, historical information, and preferences in dialogues. Our research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories, including world knowledge, profiles, social relationships, events, and dialogues. This dataset is collected to investigate the use of personalized memories, focusing on social interactions and events in the QA task. PerLTQA features two types of memory and a comprehensive benchmark of 8,593 questions for 30 characters, facilitating the exploration and application of personalized memories in Large Language Models (LLMs). Based on PerLTQA, we propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate that BERT-based classification models significantly outperform LLMs such as ChatGLM3 and ChatGPT in the memory classification task. Furthermore, our study highlights the importance of effective memory integration in the QA task.

04 Apr 2022 |
A Machine With Human-Like Memory Systems
|
⬇️
Taewoon Kim, Michael Cochez, Vincent Francois-Lavet, Mark Neerincx, and Piek Vossen

Inspired by the cognitive science theory, we explicitly model an agent with both semantic and episodic memory systems, and show that it is better than having just one of the two memory systems. In order to show this, we have designed and released our own challenging environment, "the Room", compatible with OpenAI Gym, where an agent has to properly learn how to encode, store, and retrieve memories to maximize its rewards. The Room environment allows for a hybrid intelligence setup where machines and humans can collaborate. We show that two agents collaborating with each other results in better performance than one agent acting alone. We have open-sourced our code and models at https://github.com/tae898/explicit-memory.

10 May 2022 |
Learning Fast, Learning Slow: A General Continual Learning Method based on Complementary Learning System
|
⬇️
Elahe Arani, Fahad Sarfraz, Bahram Zonooz

Humans excel at continually learning from an ever-changing environment whereas it remains a challenge for deep neural networks which exhibit catastrophic forgetting. The complementary learning system (CLS) theory suggests that the interplay between rapid instance-based learning and slow structured learning in the brain is crucial for accumulating and retaining knowledge. Here, we propose CLS-ER, a novel dual memory experience replay (ER) method which maintains short-term and long-term semantic memories that interact with the episodic memory. Our method employs an effective replay mechanism whereby new knowledge is acquired while aligning the decision boundaries with the semantic memories. CLS-ER does not utilize the task boundaries or make any assumption about the distribution of the data which makes it versatile and suited for "general continual learning". Our approach achieves state-of-the-art performance on standard benchmarks as well as more realistic general continual learning settings.

20 Oct 2016 |
A Growing Long-term Episodic & Semantic Memory
|
⬇️
Marc Pickett and Rami Al-Rfou and Louis Shao and Chris Tar

The long-term memory of most connectionist systems lies entirely in the weights of the system. Since the number of weights is typically fixed, this bounds the total amount of knowledge that can be learned and stored. Though this is not normally a problem for a neural network designed for a specific task, such a bound is undesirable for a system that continually learns over an open range of domains. To address this, we describe a lifelong learning system that leverages a fast, though non-differentiable, content-addressable memory which can be exploited to encode both a long history of sequential episodic knowledge and semantic knowledge over many episodes for an unbounded number of domains. This opens the door for investigation into transfer learning, and leveraging prior knowledge that has been learned over a lifetime of experiences to new domains.

28 Jun 2023 |
SpotEM: Efficient Video Search for Episodic Memory
|
⬇️
Santhosh Kumar Ramakrishnan, Ziad Al-Halah, Kristen Grauman

The goal in episodic memory (EM) is to search a long egocentric video to answer a natural language query (e.g., "where did I leave my purse?"). Existing EM methods exhaustively extract expensive fixed-length clip features to look everywhere in the video for the answer, which is infeasible for long wearable-camera videos that span hours or even days. We propose SpotEM, an approach to achieve efficiency for a given EM method while maintaining good accuracy. SpotEM consists of three key ideas: 1) a novel clip selector that learns to identify promising video regions to search conditioned on the language query; 2) a set of low-cost semantic indexing features that capture the context of rooms, objects, and interactions that suggest where to look; and 3) distillation losses that address the optimization issues arising from end-to-end joint training of the clip selector and EM model. Our experiments on 200+ hours of video from the Ego4D EM Natural Language Queries benchmark and three different EM models demonstrate the effectiveness of our approach: computing only 10% - 25% of the clip features, we preserve 84% - 97% of the original EM model's accuracy. Project page: https://vision.cs.utexas.edu/projects/spotem

10 Feb 2020 |
The Tensor Brain: Semantic Decoding for Perception and Memory
|
⬇️
Volker Tresp and Sahand Sharifzadeh and Dario Konopatzki and Yunpu Ma

We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of \textit{subject-predicate-object} (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.

07 May 2019 |
Continual and Multi-task Reinforcement Learning With Shared Episodic Memory
|
⬇️
Artyom Y. Sorokin and Mikhail S. Burtsev

Episodic memory plays an important role in the behavior of animals and humans. It allows the accumulation of information about current state of the environment in a task-agnostic way. This episodic representation can be later accessed by down-stream tasks in order to make their execution more efficient. In this work, we introduce the neural architecture with shared episodic memory (SEM) for learning and the sequential execution of multiple tasks. We explicitly split the encoding of episodic memory and task-specific memory into separate recurrent sub-networks. An agent augmented with SEM was able to effectively reuse episodic knowledge collected during other tasks to improve its policy on a current task in the Taxi problem. Repeated use of episodic representation in continual learning experiments facilitated acquisition of novel skills in the same environment.

16 Jun 2021 |
Solving Continuous Control with Episodic Memory
|
⬇️
Igor Kuznetsov, Andrey Filchenkov

Episodic memory lets reinforcement learning algorithms remember and exploit promising experience from the past to improve agent performance. Previous works on memory mechanisms show benefits of using episodic-based data structures for discrete action problems in terms of sample-efficiency. The application of episodic memory for continuous control with a large action space is not trivial. Our study aims to answer the question: can episodic memory be used to improve agent's performance in continuous control? Our proposed algorithm combines episodic memory with Actor-Critic architecture by modifying critic's objective. We further improve performance by introducing episodic-based replay buffer prioritization. We evaluate our algorithm on OpenAI gym domains and show greater sample-efficiency compared with the state-of-the art model-free off-policy algorithms.

Sign up or log in to comment