Spaces:
Runtime error
Runtime error
File size: 1,766 Bytes
688e382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
os.system("pip install torch")
os.system("pip install transformers")
os.system("pip install sentencepiece")
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
def classify(text):
cls= pipeline("text-classification",model=model, tokenizer=tokenizer)
return cls(text)[0]['label']
site_header = st.container()
text_input = st.container()
model_results = st.container()
with site_header:
st.title('Turkish Sentiment Analysis 😀😠')
st.markdown(
"""
[Distilled Turkish BERT model](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) that I fine-tuned on the [sepidmnorozy/Turkish_sentiment](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) dataset that is heavily based on different reviews about services/places.
For more information on the dataset:
* [Hugging Face](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment)
"""
)
with text_input:
st.header('Is Your Review Considered Positive or Negative?')
st.write("""*Please note that predictions are based on how the model was trained, so it may not be an accurate representation.*""")
user_text = st.text_input('Enter Text', max_chars=300)
with model_results:
st.subheader('Prediction:')
if user_text:
prediction = classify(user_text)
if prediction == "LABEL_0":
st.subheader('**Negative**')
else:
st.subheader('**Positive**')
st.text('') |