ljsabc's picture
Initial commit.
395d300
raw
history blame
15.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
import torch
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger
from terminaltables import AsciiTable
from mmdet.datasets.api_wrappers import COCO, COCOeval
from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
# from ..functional import eval_recalls
from mmdet.evaluation.metrics import CocoMetric
@METRICS.register_module()
class AnimeMangaMetric(CocoMetric):
def __init__(self,
manga109_annfile=None,
animeins_annfile=None,
ann_file: Optional[str] = None,
metric: Union[str, List[str]] = 'bbox',
classwise: bool = False,
proposal_nums: Sequence[int] = (100, 300, 1000),
iou_thrs: Optional[Union[float, Sequence[float]]] = None,
metric_items: Optional[Sequence[str]] = None,
format_only: bool = False,
outfile_prefix: Optional[str] = None,
file_client_args: dict = dict(backend='disk'),
collect_device: str = 'cpu',
prefix: Optional[str] = None,
sort_categories: bool = False) -> None:
super().__init__(ann_file, metric, classwise, proposal_nums, iou_thrs, metric_items, format_only, outfile_prefix, file_client_args, collect_device, prefix, sort_categories)
self.manga109_img_ids = set()
if manga109_annfile is not None:
with self.file_client.get_local_path(manga109_annfile) as local_path:
self._manga109_coco_api = COCO(local_path)
if sort_categories:
# 'categories' list in objects365_train.json and
# objects365_val.json is inconsistent, need sort
# list(or dict) before get cat_ids.
cats = self._manga109_coco_api.cats
sorted_cats = {i: cats[i] for i in sorted(cats)}
self._manga109_coco_api.cats = sorted_cats
categories = self._manga109_coco_api.dataset['categories']
sorted_categories = sorted(
categories, key=lambda i: i['id'])
self._manga109_coco_api.dataset['categories'] = sorted_categories
self.manga109_img_ids = set(self._manga109_coco_api.get_img_ids())
else:
self._manga109_coco_api = None
self.animeins_img_ids = set()
if animeins_annfile is not None:
with self.file_client.get_local_path(animeins_annfile) as local_path:
self._animeins_coco_api = COCO(local_path)
if sort_categories:
# 'categories' list in objects365_train.json and
# objects365_val.json is inconsistent, need sort
# list(or dict) before get cat_ids.
cats = self._animeins_coco_api.cats
sorted_cats = {i: cats[i] for i in sorted(cats)}
self._animeins_coco_api.cats = sorted_cats
categories = self._animeins_coco_api.dataset['categories']
sorted_categories = sorted(
categories, key=lambda i: i['id'])
self._animeins_coco_api.dataset['categories'] = sorted_categories
self.animeins_img_ids = set(self._animeins_coco_api.get_img_ids())
else:
self._animeins_coco_api = None
if self._animeins_coco_api is not None:
self._coco_api = self._animeins_coco_api
else:
self._coco_api = self._manga109_coco_api
def compute_metrics(self, results: list) -> Dict[str, float]:
# split gt and prediction list
gts, preds = zip(*results)
manga109_gts, animeins_gts = [], []
manga109_preds, animeins_preds = [], []
for gt, pred in zip(gts, preds):
if gt['img_id'] in self.manga109_img_ids:
manga109_gts.append(gt)
manga109_preds.append(pred)
else:
animeins_gts.append(gt)
animeins_preds.append(pred)
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
eval_results = OrderedDict()
if len(manga109_gts) > 0:
metrics = []
for m in self.metrics:
if m != 'segm':
metrics.append(m)
self.cat_ids = self._manga109_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
self.img_ids = self._manga109_coco_api.get_img_ids()
rst = self._compute_metrics(metrics, self._manga109_coco_api, manga109_preds, outfile_prefix, tmp_dir)
for key, item in rst.items():
eval_results['manga109_'+key] = item
if len(animeins_gts) > 0:
self.cat_ids = self._animeins_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
self.img_ids = self._animeins_coco_api.get_img_ids()
rst = self._compute_metrics(self.metrics, self._animeins_coco_api, animeins_preds, outfile_prefix, tmp_dir)
for key, item in rst.items():
eval_results['animeins_'+key] = item
return eval_results
def results2json(self, results: Sequence[dict],
outfile_prefix: str) -> dict:
"""Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask
predictions, and they have different data types. This method will
automatically recognize the type, and dump them to json files.
Args:
results (Sequence[dict]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.bbox.json", "somepath/xxx.segm.json",
"somepath/xxx.proposal.json".
Returns:
dict: Possible keys are "bbox", "segm", "proposal", and
values are corresponding filenames.
"""
bbox_json_results = []
segm_json_results = [] if 'masks' in results[0] else None
for idx, result in enumerate(results):
image_id = result.get('img_id', idx)
labels = result['labels']
bboxes = result['bboxes']
scores = result['scores']
# bbox results
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(scores[i])
data['category_id'] = self.cat_ids[label]
bbox_json_results.append(data)
if segm_json_results is None:
continue
# segm results
masks = result['masks']
mask_scores = result.get('mask_scores', scores)
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(mask_scores[i])
data['category_id'] = self.cat_ids[label]
if isinstance(masks[i]['counts'], bytes):
masks[i]['counts'] = masks[i]['counts'].decode()
data['segmentation'] = masks[i]
segm_json_results.append(data)
logger: MMLogger = MMLogger.get_current_instance()
logger.info('dumping predictions ... ')
result_files = dict()
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
dump(bbox_json_results, result_files['bbox'])
if segm_json_results is not None:
result_files['segm'] = f'{outfile_prefix}.segm.json'
dump(segm_json_results, result_files['segm'])
return result_files
def _compute_metrics(self, metrics, tgt_api, preds, outfile_prefix, tmp_dir):
logger: MMLogger = MMLogger.get_current_instance()
result_files = self.results2json(preds, outfile_prefix)
eval_results = OrderedDict()
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return eval_results
for metric in metrics:
logger.info(f'Evaluating {metric}...')
# TODO: May refactor fast_eval_recall to an independent metric?
# fast eval recall
if metric == 'proposal_fast':
ar = self.fast_eval_recall(
preds, self.proposal_nums, self.iou_thrs, logger=logger)
log_msg = []
for i, num in enumerate(self.proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
log_msg = ''.join(log_msg)
logger.info(log_msg)
continue
# evaluate proposal, bbox and segm
iou_type = 'bbox' if metric == 'proposal' else metric
if metric not in result_files:
raise KeyError(f'{metric} is not in results')
try:
predictions = load(result_files[metric])
if iou_type == 'segm':
# Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa
# When evaluating mask AP, if the results contain bbox,
# cocoapi will use the box area instead of the mask area
# for calculating the instance area. Though the overall AP
# is not affected, this leads to different
# small/medium/large mask AP results.
for x in predictions:
x.pop('bbox')
coco_dt = tgt_api.loadRes(predictions)
except IndexError:
logger.error(
'The testing results of the whole dataset is empty.')
break
coco_eval = COCOeval(tgt_api, coco_dt, iou_type)
coco_eval.params.catIds = self.cat_ids
coco_eval.params.imgIds = self.img_ids
coco_eval.params.maxDets = list(self.proposal_nums)
coco_eval.params.iouThrs = self.iou_thrs
# mapping of cocoEval.stats
coco_metric_names = {
'mAP': 0,
'mAP_50': 1,
'mAP_75': 2,
'mAP_s': 3,
'mAP_m': 4,
'mAP_l': 5,
'AR@100': 6,
'AR@300': 7,
'AR@1000': 8,
'AR_s@1000': 9,
'AR_m@1000': 10,
'AR_l@1000': 11
}
metric_items = self.metric_items
if metric_items is not None:
for metric_item in metric_items:
if metric_item not in coco_metric_names:
raise KeyError(
f'metric item "{metric_item}" is not supported')
if metric == 'proposal':
coco_eval.params.useCats = 0
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if metric_items is None:
metric_items = [
'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
'AR_m@1000', 'AR_l@1000'
]
for item in metric_items:
val = float(
f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
eval_results[item] = val
else:
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if self.classwise: # Compute per-category AP
# Compute per-category AP
# from https://github.com/facebookresearch/detectron2/
precisions = coco_eval.eval['precision']
# precision: (iou, recall, cls, area range, max dets)
assert len(self.cat_ids) == precisions.shape[2]
results_per_category = []
for idx, cat_id in enumerate(self.cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = tgt_api.loadCats(cat_id)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(f'{nm["name"]}', f'{round(ap, 3)}'))
eval_results[f'{nm["name"]}_precision'] = round(ap, 3)
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(
itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(*[
results_flatten[i::num_columns]
for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('\n' + table.table)
if metric_items is None:
metric_items = [
'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
]
for metric_item in metric_items:
key = f'{metric}_{metric_item}'
val = coco_eval.stats[coco_metric_names[metric_item]]
eval_results[key] = float(f'{round(val, 3)}')
ap = coco_eval.stats[:6]
logger.info(f'{metric}_mAP_copypaste: {ap[0]:.3f} '
f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
f'{ap[4]:.3f} {ap[5]:.3f}')
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results