qew / app.py
beyoru's picture
Update app.py
74cfe0f verified
raw
history blame
3.36 kB
from adapters import AutoAdapterModel # Ensure this library is correctly installed
from transformers import AutoTokenizer
import gradio as gr
import onnxruntime as ort
import numpy as np
import string
from huggingface_hub import InferenceClient
import os
# Load Base Model and Adapter
BASE_MODEL = "Qwen/Qwen2.5-1.5B-Instruct" # Replace with the actual base model ID
ADAPTER_NAME = "ystemsrx/Qwen2.5-Sex" # Replace with the correct adapter name
model = AutoAdapterModel.from_pretrained(BASE_MODEL)
model.load_adapter(ADAPTER_NAME, set_active=True)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
# ONNX setup
ONNX_FILENAME = "model_quantized.onnx"
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
PUNCS = string.punctuation.replace("'", "")
MAX_HISTORY = 4
MAX_HISTORY_TOKENS = 512
EOU_THRESHOLD = 0.5
# Softmax function
def softmax(logits):
exp_logits = np.exp(logits - np.max(logits))
return exp_logits / np.sum(exp_logits)
# Normalize text
def normalize_text(text):
def strip_puncs(text):
return text.translate(str.maketrans("", "", PUNCS))
return " ".join(strip_puncs(text).lower().split())
# Format chat context
def format_chat_ctx(chat_ctx):
new_chat_ctx = []
for msg in chat_ctx:
if msg["role"] in ("user", "assistant"):
content = normalize_text(msg["content"])
if content:
msg["content"] = content
new_chat_ctx.append(msg)
convo_text = tokenizer.apply_chat_template(
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
)
ix = convo_text.rfind("<|im_end|>")
return convo_text[:ix]
# Calculate EOU probability
def calculate_eou(chat_ctx, session):
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:])
inputs = tokenizer(
formatted_text,
return_tensors="np",
truncation=True,
max_length=MAX_HISTORY_TOKENS,
)
input_ids = np.array(inputs["input_ids"], dtype=np.int64)
outputs = session.run(["logits"], {"input_ids": input_ids})
logits = outputs[0][0, -1, :]
probs = softmax(logits)
eou_token_id = tokenizer.encode("<|im_end|>")[-1]
return probs[eou_token_id]
# Respond function
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}]
for val in history[-10:]:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
eou_prob = calculate_eou(messages, onnx_session)
print(f"EOU Probability: {eou_prob}")
if eou_prob < EOU_THRESHOLD:
yield "[Waiting for user to continue input...]"
return
response = ""
for message in qwen_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
print(f"Generated response: {response}")
# Gradio interface
demo = gr.ChatInterface(
respond,
)
if __name__ == "__main__":
demo.launch()