fffiloni's picture
Migrated from GitHub
3650c12 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from .box_utils import Detect, PriorBox
class L2Norm(nn.Module):
def __init__(self, n_channels, scale):
super(L2Norm, self).__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
init.constant_(self.weight, self.gamma)
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
x = torch.div(x, norm)
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
return out
class S3FDNet(nn.Module):
def __init__(self, device='cuda'):
super(S3FDNet, self).__init__()
self.device = device
self.vgg = nn.ModuleList([
nn.Conv2d(3, 64, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(128, 256, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2, ceil_mode=True),
nn.Conv2d(256, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(512, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, 1, 1),
nn.ReLU(inplace=True),
])
self.L2Norm3_3 = L2Norm(256, 10)
self.L2Norm4_3 = L2Norm(512, 8)
self.L2Norm5_3 = L2Norm(512, 5)
self.extras = nn.ModuleList([
nn.Conv2d(1024, 256, 1, 1),
nn.Conv2d(256, 512, 3, 2, padding=1),
nn.Conv2d(512, 128, 1, 1),
nn.Conv2d(128, 256, 3, 2, padding=1),
])
self.loc = nn.ModuleList([
nn.Conv2d(256, 4, 3, 1, padding=1),
nn.Conv2d(512, 4, 3, 1, padding=1),
nn.Conv2d(512, 4, 3, 1, padding=1),
nn.Conv2d(1024, 4, 3, 1, padding=1),
nn.Conv2d(512, 4, 3, 1, padding=1),
nn.Conv2d(256, 4, 3, 1, padding=1),
])
self.conf = nn.ModuleList([
nn.Conv2d(256, 4, 3, 1, padding=1),
nn.Conv2d(512, 2, 3, 1, padding=1),
nn.Conv2d(512, 2, 3, 1, padding=1),
nn.Conv2d(1024, 2, 3, 1, padding=1),
nn.Conv2d(512, 2, 3, 1, padding=1),
nn.Conv2d(256, 2, 3, 1, padding=1),
])
self.softmax = nn.Softmax(dim=-1)
self.detect = Detect()
def forward(self, x):
size = x.size()[2:]
sources = list()
loc = list()
conf = list()
for k in range(16):
x = self.vgg[k](x)
s = self.L2Norm3_3(x)
sources.append(s)
for k in range(16, 23):
x = self.vgg[k](x)
s = self.L2Norm4_3(x)
sources.append(s)
for k in range(23, 30):
x = self.vgg[k](x)
s = self.L2Norm5_3(x)
sources.append(s)
for k in range(30, len(self.vgg)):
x = self.vgg[k](x)
sources.append(x)
# apply extra layers and cache source layer outputs
for k, v in enumerate(self.extras):
x = F.relu(v(x), inplace=True)
if k % 2 == 1:
sources.append(x)
# apply multibox head to source layers
loc_x = self.loc[0](sources[0])
conf_x = self.conf[0](sources[0])
max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
for i in range(1, len(sources)):
x = sources[i]
conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
features_maps = []
for i in range(len(loc)):
feat = []
feat += [loc[i].size(1), loc[i].size(2)]
features_maps += [feat]
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
with torch.no_grad():
self.priorbox = PriorBox(size, features_maps)
self.priors = self.priorbox.forward()
output = self.detect.forward(
loc.view(loc.size(0), -1, 4),
self.softmax(conf.view(conf.size(0), -1, 2)),
self.priors.type(type(x.data)).to(self.device)
)
return output