Spaces:
Sleeping
Sleeping
# Step 1: Import libraries | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from PIL import Image, ImageDraw | |
import torch | |
import gradio as gr | |
# Step 2: Load model and processor | |
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection") | |
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection") | |
# Step 3: Define the inference logic | |
def detect_traffic_accidents(image): | |
# Preprocess image | |
inputs = processor(images=image, return_tensors="pt") | |
# Run model inference | |
outputs = model(**inputs) | |
# Extract detections | |
target_sizes = torch.tensor([image.size[::-1]]) # Width, height | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Annotate image with bounding boxes | |
draw = ImageDraw.Draw(image) | |
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]): | |
if score > 0.9: # Confidence threshold | |
x_min, y_min, x_max, y_max = box | |
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3) | |
draw.text((x_min, y_min), f"{model.config.id2label[label]}: {score:.2f}", fill="red") | |
return image | |
# Step 4: Define the Gradio Interface | |
def api_endpoint(input_image): | |
output_image = detect_traffic_accidents(input_image) | |
return output_image | |
# Step 5: Launch Gradio app | |
iface = gr.Interface( | |
fn=api_endpoint, | |
inputs=gr.Image(type="pil"), # Accepts images | |
outputs=gr.Image(type="pil"), # Returns annotated image | |
) | |
iface.launch(server_name="0.0.0.0", server_port=7860) # Accessible via LAN/WAN | |