Spaces:
Runtime error
Runtime error
chandansocial7
commited on
Commit
•
61aa69f
1
Parent(s):
79a541c
Upload 33 files
Browse files- configs/dit/inference/16x256x256.py +31 -0
- configs/dit/inference/1x256x256-class.py +31 -0
- configs/dit/inference/1x256x256.py +32 -0
- configs/dit/train/16x256x256.py +50 -0
- configs/dit/train/1x256x256.py +51 -0
- configs/latte/inference/16x256x256-class.py +30 -0
- configs/latte/inference/16x256x256.py +31 -0
- configs/latte/train/16x256x256.py +49 -0
- configs/opensora-v1-1/inference/sample-ref.py +62 -0
- configs/opensora-v1-1/inference/sample.py +43 -0
- configs/opensora-v1-1/train/benchmark.py +101 -0
- configs/opensora-v1-1/train/image.py +65 -0
- configs/opensora-v1-1/train/stage1.py +77 -0
- configs/opensora-v1-1/train/stage2.py +79 -0
- configs/opensora-v1-1/train/stage3.py +79 -0
- configs/opensora-v1-1/train/video.py +67 -0
- configs/opensora/inference/16x256x256.py +39 -0
- configs/opensora/inference/16x512x512.py +35 -0
- configs/opensora/inference/64x512x512.py +35 -0
- configs/opensora/train/16x256x256-mask.py +60 -0
- configs/opensora/train/16x256x256-spee.py +60 -0
- configs/opensora/train/16x256x256.py +53 -0
- configs/opensora/train/16x512x512.py +54 -0
- configs/opensora/train/360x512x512.py +61 -0
- configs/opensora/train/64x512x512-sp.py +54 -0
- configs/opensora/train/64x512x512.py +54 -0
- configs/pixart/inference/16x256x256.py +32 -0
- configs/pixart/inference/1x1024MS.py +34 -0
- configs/pixart/inference/1x256x256.py +33 -0
- configs/pixart/inference/1x512x512.py +39 -0
- configs/pixart/train/16x256x256.py +53 -0
- configs/pixart/train/1x512x512.py +54 -0
- configs/pixart/train/64x512x512.py +55 -0
configs/dit/inference/16x256x256.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
condition="text",
|
9 |
+
from_pretrained="PRETRAINED_MODEL",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="clip",
|
17 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
18 |
+
model_max_length=77,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "bf16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256-class.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
no_temporal_pos_emb=True,
|
9 |
+
condition="label_1000",
|
10 |
+
from_pretrained="DiT-XL-2-256x256.pt",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="classes",
|
18 |
+
num_classes=1000,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "bf16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
no_temporal_pos_emb=True,
|
9 |
+
condition="text",
|
10 |
+
from_pretrained="PRETRAINED_MODEL",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="clip",
|
18 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
19 |
+
model_max_length=77,
|
20 |
+
)
|
21 |
+
scheduler = dict(
|
22 |
+
type="dpm-solver",
|
23 |
+
num_sampling_steps=20,
|
24 |
+
cfg_scale=4.0,
|
25 |
+
)
|
26 |
+
dtype = "bf16"
|
27 |
+
|
28 |
+
# Others
|
29 |
+
batch_size = 2
|
30 |
+
seed = 42
|
31 |
+
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/dit/train/16x256x256.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="DiT-XL/2",
|
20 |
+
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
+
enable_flashattn=True,
|
22 |
+
enable_layernorm_kernel=True,
|
23 |
+
)
|
24 |
+
vae = dict(
|
25 |
+
type="VideoAutoencoderKL",
|
26 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
27 |
+
)
|
28 |
+
text_encoder = dict(
|
29 |
+
type="clip",
|
30 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
31 |
+
model_max_length=77,
|
32 |
+
)
|
33 |
+
scheduler = dict(
|
34 |
+
type="iddpm",
|
35 |
+
timestep_respacing="",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Others
|
39 |
+
seed = 42
|
40 |
+
outputs = "outputs"
|
41 |
+
wandb = False
|
42 |
+
|
43 |
+
epochs = 1000
|
44 |
+
log_every = 10
|
45 |
+
ckpt_every = 1000
|
46 |
+
load = None
|
47 |
+
|
48 |
+
batch_size = 8
|
49 |
+
lr = 2e-5
|
50 |
+
grad_clip = 1.0
|
configs/dit/train/1x256x256.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=1,
|
7 |
+
image_size=(256, 256),
|
8 |
+
transform_name="center",
|
9 |
+
)
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
num_workers = 4
|
13 |
+
dtype = "bf16"
|
14 |
+
grad_checkpoint = False
|
15 |
+
plugin = "zero2"
|
16 |
+
sp_size = 1
|
17 |
+
|
18 |
+
# Define model
|
19 |
+
model = dict(
|
20 |
+
type="DiT-XL/2",
|
21 |
+
no_temporal_pos_emb=True,
|
22 |
+
enable_flashattn=True,
|
23 |
+
enable_layernorm_kernel=True,
|
24 |
+
)
|
25 |
+
vae = dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
28 |
+
)
|
29 |
+
text_encoder = dict(
|
30 |
+
type="clip",
|
31 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
32 |
+
model_max_length=77,
|
33 |
+
)
|
34 |
+
scheduler = dict(
|
35 |
+
type="iddpm",
|
36 |
+
timestep_respacing="",
|
37 |
+
)
|
38 |
+
|
39 |
+
# Others
|
40 |
+
seed = 42
|
41 |
+
outputs = "outputs"
|
42 |
+
wandb = False
|
43 |
+
|
44 |
+
epochs = 1000
|
45 |
+
log_every = 10
|
46 |
+
ckpt_every = 1000
|
47 |
+
load = None
|
48 |
+
|
49 |
+
batch_size = 128
|
50 |
+
lr = 1e-4 # according to DiT repo
|
51 |
+
grad_clip = 1.0
|
configs/latte/inference/16x256x256-class.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="Latte-XL/2",
|
8 |
+
condition="label_101",
|
9 |
+
from_pretrained="Latte-XL-2-256x256-ucf101.pt",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="classes",
|
17 |
+
num_classes=101,
|
18 |
+
)
|
19 |
+
scheduler = dict(
|
20 |
+
type="dpm-solver",
|
21 |
+
num_sampling_steps=20,
|
22 |
+
cfg_scale=4.0,
|
23 |
+
)
|
24 |
+
dtype = "bf16"
|
25 |
+
|
26 |
+
# Others
|
27 |
+
batch_size = 2
|
28 |
+
seed = 42
|
29 |
+
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
+
save_dir = "./samples/samples/"
|
configs/latte/inference/16x256x256.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="Latte-XL/2",
|
8 |
+
condition="text",
|
9 |
+
from_pretrained="PRETRAINED_MODEL",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="clip",
|
17 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
18 |
+
model_max_length=77,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "bf16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/latte/train/16x256x256.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="Latte-XL/2",
|
20 |
+
enable_flashattn=True,
|
21 |
+
enable_layernorm_kernel=True,
|
22 |
+
)
|
23 |
+
vae = dict(
|
24 |
+
type="VideoAutoencoderKL",
|
25 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
26 |
+
)
|
27 |
+
text_encoder = dict(
|
28 |
+
type="clip",
|
29 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
30 |
+
model_max_length=77,
|
31 |
+
)
|
32 |
+
scheduler = dict(
|
33 |
+
type="iddpm",
|
34 |
+
timestep_respacing="",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Others
|
38 |
+
seed = 42
|
39 |
+
outputs = "outputs"
|
40 |
+
wandb = False
|
41 |
+
|
42 |
+
epochs = 1000
|
43 |
+
log_every = 10
|
44 |
+
ckpt_every = 1000
|
45 |
+
load = None
|
46 |
+
|
47 |
+
batch_size = 8
|
48 |
+
lr = 2e-5
|
49 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/inference/sample-ref.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Condition
|
8 |
+
prompt_path = None
|
9 |
+
prompt = [
|
10 |
+
"A car driving on the ocean.",
|
11 |
+
'Drone view of waves crashing against the rugged cliffs along Big Sur\'s garay point beach. The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore. A small island with a lighthouse sits in the distance, and green shrubbery covers the cliff\'s edge. The steep drop from the road down to the beach is a dramatic feat, with the cliff\'s edges jutting out over the sea. This is a view that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast Highway.{"reference_path": "assets/images/condition/cliff.png", "mask_strategy": "0"}',
|
12 |
+
"In an ornate, historical hall, a massive tidal wave peaks and begins to crash. Two surfers, seizing the moment, skillfully navigate the face of the wave.",
|
13 |
+
]
|
14 |
+
|
15 |
+
loop = 2
|
16 |
+
condition_frame_length = 4
|
17 |
+
reference_path = [
|
18 |
+
"https://cdn.openai.com/tmp/s/interp/d0.mp4",
|
19 |
+
None,
|
20 |
+
"assets/images/condition/wave.png",
|
21 |
+
]
|
22 |
+
# valid when reference_path is not None
|
23 |
+
# (loop id, ref id, ref start, length, target start)
|
24 |
+
mask_strategy = [
|
25 |
+
"0,0,0,0,8,0.3",
|
26 |
+
None,
|
27 |
+
"0",
|
28 |
+
]
|
29 |
+
|
30 |
+
# Define model
|
31 |
+
model = dict(
|
32 |
+
type="STDiT2-XL/2",
|
33 |
+
from_pretrained=None,
|
34 |
+
input_sq_size=512,
|
35 |
+
qk_norm=True,
|
36 |
+
enable_flashattn=True,
|
37 |
+
enable_layernorm_kernel=True,
|
38 |
+
)
|
39 |
+
vae = dict(
|
40 |
+
type="VideoAutoencoderKL",
|
41 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
42 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
43 |
+
micro_batch_size=4,
|
44 |
+
)
|
45 |
+
text_encoder = dict(
|
46 |
+
type="t5",
|
47 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
48 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
49 |
+
model_max_length=200,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="iddpm",
|
53 |
+
num_sampling_steps=100,
|
54 |
+
cfg_scale=7.0,
|
55 |
+
cfg_channel=3, # or None
|
56 |
+
)
|
57 |
+
dtype = "bf16"
|
58 |
+
|
59 |
+
# Others
|
60 |
+
batch_size = 1
|
61 |
+
seed = 42
|
62 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/inference/sample.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Define model
|
8 |
+
model = dict(
|
9 |
+
type="STDiT2-XL/2",
|
10 |
+
from_pretrained=None,
|
11 |
+
input_sq_size=512,
|
12 |
+
qk_norm=True,
|
13 |
+
enable_flashattn=True,
|
14 |
+
enable_layernorm_kernel=True,
|
15 |
+
)
|
16 |
+
vae = dict(
|
17 |
+
type="VideoAutoencoderKL",
|
18 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
19 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
20 |
+
micro_batch_size=4,
|
21 |
+
)
|
22 |
+
text_encoder = dict(
|
23 |
+
type="t5",
|
24 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
25 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
26 |
+
model_max_length=200,
|
27 |
+
)
|
28 |
+
scheduler = dict(
|
29 |
+
type="iddpm",
|
30 |
+
num_sampling_steps=100,
|
31 |
+
cfg_scale=7.0,
|
32 |
+
cfg_channel=3, # or None
|
33 |
+
)
|
34 |
+
dtype = "bf16"
|
35 |
+
|
36 |
+
# Condition
|
37 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
38 |
+
prompt = None # prompt has higher priority than prompt_path
|
39 |
+
|
40 |
+
# Others
|
41 |
+
batch_size = 1
|
42 |
+
seed = 42
|
43 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/train/benchmark.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this file is only for batch size search and is not used for training
|
2 |
+
|
3 |
+
# Define dataset
|
4 |
+
dataset = dict(
|
5 |
+
type="VariableVideoTextDataset",
|
6 |
+
data_path=None,
|
7 |
+
num_frames=None,
|
8 |
+
frame_interval=3,
|
9 |
+
image_size=(None, None),
|
10 |
+
transform_name="resize_crop",
|
11 |
+
)
|
12 |
+
|
13 |
+
# bucket config format:
|
14 |
+
# 1. { resolution: {num_frames: (prob, batch_size)} }, in this case batch_size is ignored when searching
|
15 |
+
# 2. { resolution: {num_frames: (prob, (max_batch_size, ))} }, batch_size is searched in the range [batch_size_start, max_batch_size), batch_size_start is configured via CLI
|
16 |
+
# 3. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size)
|
17 |
+
# 4. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size, step_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size) with step_size (grid search)
|
18 |
+
# 5. { resolution: {num_frames: (0.0, None)} }, this bucket will not be used
|
19 |
+
|
20 |
+
bucket_config = {
|
21 |
+
# == manual search ==
|
22 |
+
# "240p": {128: (1.0, 2)}, # 4.28s/it
|
23 |
+
# "240p": {64: (1.0, 4)},
|
24 |
+
# "240p": {32: (1.0, 8)}, # 4.6s/it
|
25 |
+
# "240p": {16: (1.0, 16)}, # 4.6s/it
|
26 |
+
# "480p": {16: (1.0, 4)}, # 4.6s/it
|
27 |
+
# "720p": {16: (1.0, 2)}, # 5.89s/it
|
28 |
+
# "256": {1: (1.0, 256)}, # 4.5s/it
|
29 |
+
# "512": {1: (1.0, 96)}, # 4.7s/it
|
30 |
+
# "512": {1: (1.0, 128)}, # 6.3s/it
|
31 |
+
# "480p": {1: (1.0, 50)}, # 4.0s/it
|
32 |
+
# "1024": {1: (1.0, 32)}, # 6.8s/it
|
33 |
+
# "1024": {1: (1.0, 20)}, # 4.3s/it
|
34 |
+
# "1080p": {1: (1.0, 16)}, # 8.6s/it
|
35 |
+
# "1080p": {1: (1.0, 8)}, # 4.4s/it
|
36 |
+
# == stage 2 ==
|
37 |
+
# "240p": {
|
38 |
+
# 16: (1.0, (2, 32)),
|
39 |
+
# 32: (1.0, (2, 16)),
|
40 |
+
# 64: (1.0, (2, 8)),
|
41 |
+
# 128: (1.0, (2, 6)),
|
42 |
+
# },
|
43 |
+
# "256": {1: (1.0, (128, 300))},
|
44 |
+
# "512": {1: (0.5, (64, 128))},
|
45 |
+
# "480p": {1: (0.4, (32, 128)), 16: (0.4, (2, 32)), 32: (0.0, None)},
|
46 |
+
# "720p": {16: (0.1, (2, 16)), 32: (0.0, None)}, # No examples now
|
47 |
+
# "1024": {1: (0.3, (8, 64))},
|
48 |
+
# "1080p": {1: (0.3, (2, 32))},
|
49 |
+
# == stage 3 ==
|
50 |
+
"720p": {1: (20, 40), 32: (0.5, (2, 4)), 64: (0.5, (1, 1))},
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
# Define acceleration
|
55 |
+
num_workers = 4
|
56 |
+
num_bucket_build_workers = 16
|
57 |
+
dtype = "bf16"
|
58 |
+
grad_checkpoint = True
|
59 |
+
plugin = "zero2"
|
60 |
+
sp_size = 1
|
61 |
+
|
62 |
+
# Define model
|
63 |
+
model = dict(
|
64 |
+
type="STDiT2-XL/2",
|
65 |
+
from_pretrained=None,
|
66 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
+
qk_norm=True,
|
68 |
+
enable_flashattn=True,
|
69 |
+
enable_layernorm_kernel=True,
|
70 |
+
)
|
71 |
+
vae = dict(
|
72 |
+
type="VideoAutoencoderKL",
|
73 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
74 |
+
micro_batch_size=4,
|
75 |
+
local_files_only=True,
|
76 |
+
)
|
77 |
+
text_encoder = dict(
|
78 |
+
type="t5",
|
79 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
80 |
+
model_max_length=200,
|
81 |
+
shardformer=True,
|
82 |
+
local_files_only=True,
|
83 |
+
)
|
84 |
+
scheduler = dict(
|
85 |
+
type="iddpm",
|
86 |
+
timestep_respacing="",
|
87 |
+
)
|
88 |
+
|
89 |
+
# Others
|
90 |
+
seed = 42
|
91 |
+
outputs = "outputs"
|
92 |
+
wandb = False
|
93 |
+
|
94 |
+
epochs = 1000
|
95 |
+
log_every = 10
|
96 |
+
ckpt_every = 1000
|
97 |
+
load = None
|
98 |
+
|
99 |
+
batch_size = None
|
100 |
+
lr = 2e-5
|
101 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/image.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"256": {1: (1.0, 256)},
|
12 |
+
"512": {1: (1.0, 80)},
|
13 |
+
"480p": {1: (1.0, 52)},
|
14 |
+
"1024": {1: (1.0, 20)},
|
15 |
+
"1080p": {1: (1.0, 8)},
|
16 |
+
}
|
17 |
+
|
18 |
+
# Define acceleration
|
19 |
+
num_workers = 4
|
20 |
+
num_bucket_build_workers = 16
|
21 |
+
dtype = "bf16"
|
22 |
+
grad_checkpoint = True
|
23 |
+
plugin = "zero2"
|
24 |
+
sp_size = 1
|
25 |
+
|
26 |
+
# Define model
|
27 |
+
model = dict(
|
28 |
+
type="STDiT2-XL/2",
|
29 |
+
from_pretrained=None,
|
30 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
+
qk_norm=True,
|
32 |
+
enable_flashattn=True,
|
33 |
+
enable_layernorm_kernel=True,
|
34 |
+
)
|
35 |
+
vae = dict(
|
36 |
+
type="VideoAutoencoderKL",
|
37 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
38 |
+
micro_batch_size=4,
|
39 |
+
local_files_only=True,
|
40 |
+
)
|
41 |
+
text_encoder = dict(
|
42 |
+
type="t5",
|
43 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
44 |
+
model_max_length=200,
|
45 |
+
shardformer=True,
|
46 |
+
local_files_only=True,
|
47 |
+
)
|
48 |
+
scheduler = dict(
|
49 |
+
type="iddpm",
|
50 |
+
timestep_respacing="",
|
51 |
+
)
|
52 |
+
|
53 |
+
# Others
|
54 |
+
seed = 42
|
55 |
+
outputs = "outputs"
|
56 |
+
wandb = False
|
57 |
+
|
58 |
+
epochs = 1000
|
59 |
+
log_every = 10
|
60 |
+
ckpt_every = 500
|
61 |
+
load = None
|
62 |
+
|
63 |
+
batch_size = 10 # only for logging
|
64 |
+
lr = 2e-5
|
65 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage1.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
# IMG: 1024 (20%) 512 (30%) 256 (50%) drop (50%)
|
11 |
+
bucket_config = { # 1s/it
|
12 |
+
"144p": {1: (0.5, 48), 16: (1.0, 6), 32: (1.0, 3), 96: (1.0, 1)},
|
13 |
+
"256": {1: (0.5, 24), 16: (0.5, 3), 48: (0.5, 1), 64: (0.0, None)},
|
14 |
+
"240p": {16: (0.3, 2), 32: (0.3, 1), 64: (0.0, None)},
|
15 |
+
"512": {1: (0.4, 12)},
|
16 |
+
"1024": {1: (0.3, 3)},
|
17 |
+
}
|
18 |
+
mask_ratios = {
|
19 |
+
"mask_no": 0.75,
|
20 |
+
"mask_quarter_random": 0.025,
|
21 |
+
"mask_quarter_head": 0.025,
|
22 |
+
"mask_quarter_tail": 0.025,
|
23 |
+
"mask_quarter_head_tail": 0.05,
|
24 |
+
"mask_image_random": 0.025,
|
25 |
+
"mask_image_head": 0.025,
|
26 |
+
"mask_image_tail": 0.025,
|
27 |
+
"mask_image_head_tail": 0.05,
|
28 |
+
}
|
29 |
+
|
30 |
+
# Define acceleration
|
31 |
+
num_workers = 8
|
32 |
+
num_bucket_build_workers = 16
|
33 |
+
dtype = "bf16"
|
34 |
+
grad_checkpoint = False
|
35 |
+
plugin = "zero2"
|
36 |
+
sp_size = 1
|
37 |
+
|
38 |
+
# Define model
|
39 |
+
model = dict(
|
40 |
+
type="STDiT2-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
+
qk_norm=True,
|
44 |
+
enable_flashattn=True,
|
45 |
+
enable_layernorm_kernel=True,
|
46 |
+
)
|
47 |
+
vae = dict(
|
48 |
+
type="VideoAutoencoderKL",
|
49 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
50 |
+
micro_batch_size=4,
|
51 |
+
local_files_only=True,
|
52 |
+
)
|
53 |
+
text_encoder = dict(
|
54 |
+
type="t5",
|
55 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
56 |
+
model_max_length=200,
|
57 |
+
shardformer=True,
|
58 |
+
local_files_only=True,
|
59 |
+
)
|
60 |
+
scheduler = dict(
|
61 |
+
type="iddpm",
|
62 |
+
timestep_respacing="",
|
63 |
+
)
|
64 |
+
|
65 |
+
# Others
|
66 |
+
seed = 42
|
67 |
+
outputs = "outputs"
|
68 |
+
wandb = False
|
69 |
+
|
70 |
+
epochs = 1000
|
71 |
+
log_every = 10
|
72 |
+
ckpt_every = 500
|
73 |
+
load = None
|
74 |
+
|
75 |
+
batch_size = None
|
76 |
+
lr = 2e-5
|
77 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage2.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 7s/it
|
11 |
+
"144p": {1: (1.0, 48), 16: (1.0, 17), 32: (1.0, 9), 64: (1.0, 4), 128: (1.0, 1)},
|
12 |
+
"256": {1: (0.8, 254), 16: (0.5, 17), 32: (0.5, 9), 64: (0.5, 4), 128: (0.5, 1)},
|
13 |
+
"240p": {1: (0.1, 20), 16: (0.9, 17), 32: (0.8, 9), 64: (0.8, 4), 128: (0.8, 2)},
|
14 |
+
"512": {1: (0.5, 86), 16: (0.2, 4), 32: (0.2, 2), 64: (0.2, 1), 128: (0.0, None)},
|
15 |
+
"480p": {1: (0.4, 54), 16: (0.4, 4), 32: (0.0, None)},
|
16 |
+
"720p": {1: (0.1, 20), 16: (0.1, 2), 32: (0.0, None)},
|
17 |
+
"1024": {1: (0.3, 20)},
|
18 |
+
"1080p": {1: (0.4, 8)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"mask_no": 0.75,
|
22 |
+
"mask_quarter_random": 0.025,
|
23 |
+
"mask_quarter_head": 0.025,
|
24 |
+
"mask_quarter_tail": 0.025,
|
25 |
+
"mask_quarter_head_tail": 0.05,
|
26 |
+
"mask_image_random": 0.025,
|
27 |
+
"mask_image_head": 0.025,
|
28 |
+
"mask_image_tail": 0.025,
|
29 |
+
"mask_image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
enable_flashattn=True,
|
47 |
+
enable_layernorm_kernel=True,
|
48 |
+
)
|
49 |
+
vae = dict(
|
50 |
+
type="VideoAutoencoderKL",
|
51 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
52 |
+
micro_batch_size=4,
|
53 |
+
local_files_only=True,
|
54 |
+
)
|
55 |
+
text_encoder = dict(
|
56 |
+
type="t5",
|
57 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
58 |
+
model_max_length=200,
|
59 |
+
shardformer=True,
|
60 |
+
local_files_only=True,
|
61 |
+
)
|
62 |
+
scheduler = dict(
|
63 |
+
type="iddpm",
|
64 |
+
timestep_respacing="",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Others
|
68 |
+
seed = 42
|
69 |
+
outputs = "outputs"
|
70 |
+
wandb = False
|
71 |
+
|
72 |
+
epochs = 1000
|
73 |
+
log_every = 10
|
74 |
+
ckpt_every = 500
|
75 |
+
load = None
|
76 |
+
|
77 |
+
batch_size = None
|
78 |
+
lr = 2e-5
|
79 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage3.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 13s/it
|
11 |
+
"144p": {1: (1.0, 200), 16: (1.0, 36), 32: (1.0, 18), 64: (1.0, 9), 128: (1.0, 4)},
|
12 |
+
"256": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 11), 64: (0.5, 6), 128: (0.8, 4)},
|
13 |
+
"240p": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 10), 64: (0.5, 6), 128: (0.5, 3)},
|
14 |
+
"360p": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.5, 1)},
|
15 |
+
"512": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.8, 1)},
|
16 |
+
"480p": {1: (0.4, 80), 16: (0.6, 6), 32: (0.6, 3), 64: (0.6, 1), 128: (0.0, None)},
|
17 |
+
"720p": {1: (0.4, 40), 16: (0.6, 3), 32: (0.6, 1), 96: (0.0, None)},
|
18 |
+
"1024": {1: (0.3, 40)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"mask_no": 0.75,
|
22 |
+
"mask_quarter_random": 0.025,
|
23 |
+
"mask_quarter_head": 0.025,
|
24 |
+
"mask_quarter_tail": 0.025,
|
25 |
+
"mask_quarter_head_tail": 0.05,
|
26 |
+
"mask_image_random": 0.025,
|
27 |
+
"mask_image_head": 0.025,
|
28 |
+
"mask_image_tail": 0.025,
|
29 |
+
"mask_image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
enable_flashattn=True,
|
47 |
+
enable_layernorm_kernel=True,
|
48 |
+
)
|
49 |
+
vae = dict(
|
50 |
+
type="VideoAutoencoderKL",
|
51 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
52 |
+
micro_batch_size=4,
|
53 |
+
local_files_only=True,
|
54 |
+
)
|
55 |
+
text_encoder = dict(
|
56 |
+
type="t5",
|
57 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
58 |
+
model_max_length=200,
|
59 |
+
shardformer=True,
|
60 |
+
local_files_only=True,
|
61 |
+
)
|
62 |
+
scheduler = dict(
|
63 |
+
type="iddpm",
|
64 |
+
timestep_respacing="",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Others
|
68 |
+
seed = 42
|
69 |
+
outputs = "outputs"
|
70 |
+
wandb = False
|
71 |
+
|
72 |
+
epochs = 1000
|
73 |
+
log_every = 10
|
74 |
+
ckpt_every = 500
|
75 |
+
load = None
|
76 |
+
|
77 |
+
batch_size = None
|
78 |
+
lr = 2e-5
|
79 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/video.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"240p": {16: (1.0, 16), 32: (1.0, 8), 64: (1.0, 4), 128: (1.0, 2)},
|
12 |
+
"256": {1: (1.0, 256)},
|
13 |
+
"512": {1: (0.5, 80)},
|
14 |
+
"480p": {1: (0.4, 52), 16: (0.4, 4), 32: (0.0, None)},
|
15 |
+
"720p": {16: (0.1, 2), 32: (0.0, None)}, # No examples now
|
16 |
+
"1024": {1: (0.3, 20)},
|
17 |
+
"1080p": {1: (0.3, 8)},
|
18 |
+
}
|
19 |
+
|
20 |
+
# Define acceleration
|
21 |
+
num_workers = 4
|
22 |
+
num_bucket_build_workers = 16
|
23 |
+
dtype = "bf16"
|
24 |
+
grad_checkpoint = True
|
25 |
+
plugin = "zero2"
|
26 |
+
sp_size = 1
|
27 |
+
|
28 |
+
# Define model
|
29 |
+
model = dict(
|
30 |
+
type="STDiT2-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
+
qk_norm=True,
|
34 |
+
enable_flashattn=True,
|
35 |
+
enable_layernorm_kernel=True,
|
36 |
+
)
|
37 |
+
vae = dict(
|
38 |
+
type="VideoAutoencoderKL",
|
39 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
40 |
+
micro_batch_size=4,
|
41 |
+
local_files_only=True,
|
42 |
+
)
|
43 |
+
text_encoder = dict(
|
44 |
+
type="t5",
|
45 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
46 |
+
model_max_length=200,
|
47 |
+
shardformer=True,
|
48 |
+
local_files_only=True,
|
49 |
+
)
|
50 |
+
scheduler = dict(
|
51 |
+
type="iddpm",
|
52 |
+
timestep_respacing="",
|
53 |
+
)
|
54 |
+
|
55 |
+
# Others
|
56 |
+
seed = 42
|
57 |
+
outputs = "outputs"
|
58 |
+
wandb = False
|
59 |
+
|
60 |
+
epochs = 1000
|
61 |
+
log_every = 10
|
62 |
+
ckpt_every = 500
|
63 |
+
load = None
|
64 |
+
|
65 |
+
batch_size = 10 # only for logging
|
66 |
+
lr = 2e-5
|
67 |
+
grad_clip = 1.0
|
configs/opensora/inference/16x256x256.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=0.5,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=4,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
cfg_channel=3, # or None
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Condition
|
33 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
34 |
+
prompt = None # prompt has higher priority than prompt_path
|
35 |
+
|
36 |
+
# Others
|
37 |
+
batch_size = 1
|
38 |
+
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
configs/opensora/inference/16x512x512.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "bf16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 2
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/inference/64x512x512.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 64
|
2 |
+
fps = 24 // 2
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=2 / 3,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=128,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "bf16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 1
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/train/16x256x256-mask.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"mask_no": 0.7,
|
28 |
+
"mask_random": 0.15,
|
29 |
+
"mask_head": 0.05,
|
30 |
+
"mask_tail": 0.05,
|
31 |
+
"mask_head_tail": 0.05,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"mask_no": 0.5,
|
28 |
+
"mask_random": 0.29,
|
29 |
+
"mask_head": 0.07,
|
30 |
+
"mask_tail": 0.07,
|
31 |
+
"mask_head_tail": 0.07,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm-speed",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
)
|
30 |
+
text_encoder = dict(
|
31 |
+
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
+
model_max_length=120,
|
34 |
+
shardformer=True,
|
35 |
+
)
|
36 |
+
scheduler = dict(
|
37 |
+
type="iddpm",
|
38 |
+
timestep_respacing="",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Others
|
42 |
+
seed = 42
|
43 |
+
outputs = "outputs"
|
44 |
+
wandb = False
|
45 |
+
|
46 |
+
epochs = 1000
|
47 |
+
log_every = 10
|
48 |
+
ckpt_every = 1000
|
49 |
+
load = None
|
50 |
+
|
51 |
+
batch_size = 8
|
52 |
+
lr = 2e-5
|
53 |
+
grad_clip = 1.0
|
configs/opensora/train/16x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
micro_batch_size=128,
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 500
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 8
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/opensora/train/360x512x512.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=360,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define acceleration
|
18 |
+
dtype = "bf16"
|
19 |
+
grad_checkpoint = True
|
20 |
+
plugin = "zero2-seq"
|
21 |
+
sp_size = 2
|
22 |
+
|
23 |
+
# Define model
|
24 |
+
model = dict(
|
25 |
+
type="STDiT-XL/2",
|
26 |
+
space_scale=1.0,
|
27 |
+
time_scale=2 / 3,
|
28 |
+
from_pretrained=None,
|
29 |
+
enable_flashattn=True,
|
30 |
+
enable_layernorm_kernel=True,
|
31 |
+
enable_sequence_parallelism=True, # enable sq here
|
32 |
+
)
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
micro_batch_size=128,
|
37 |
+
)
|
38 |
+
text_encoder = dict(
|
39 |
+
type="t5",
|
40 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
41 |
+
model_max_length=120,
|
42 |
+
shardformer=True,
|
43 |
+
)
|
44 |
+
scheduler = dict(
|
45 |
+
type="iddpm",
|
46 |
+
timestep_respacing="",
|
47 |
+
)
|
48 |
+
|
49 |
+
# Others
|
50 |
+
seed = 42
|
51 |
+
outputs = "outputs"
|
52 |
+
wandb = False
|
53 |
+
|
54 |
+
epochs = 1000
|
55 |
+
log_every = 10
|
56 |
+
ckpt_every = 250
|
57 |
+
load = None
|
58 |
+
|
59 |
+
batch_size = 1
|
60 |
+
lr = 2e-5
|
61 |
+
grad_clip = 1.0
|
configs/opensora/train/64x512x512-sp.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 2
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
enable_sequence_parallelism=True, # enable sq here
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 1
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/opensora/train/64x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=64,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
micro_batch_size=64,
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 250
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/inference/16x256x256.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=0.5,
|
9 |
+
time_scale=1.0,
|
10 |
+
from_pretrained="outputs/098-F16S3-PixArt-XL-2/epoch7-global_step30000/model_ckpt.pt",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="t5",
|
18 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
19 |
+
model_max_length=120,
|
20 |
+
)
|
21 |
+
scheduler = dict(
|
22 |
+
type="dpm-solver",
|
23 |
+
num_sampling_steps=20,
|
24 |
+
cfg_scale=7.0,
|
25 |
+
)
|
26 |
+
dtype = "bf16"
|
27 |
+
|
28 |
+
# Others
|
29 |
+
batch_size = 2
|
30 |
+
seed = 42
|
31 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x1024MS.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (1920, 512)
|
4 |
+
multi_resolution = "PixArtMS"
|
5 |
+
|
6 |
+
# Define model
|
7 |
+
model = dict(
|
8 |
+
type="PixArtMS-XL/2",
|
9 |
+
space_scale=2.0,
|
10 |
+
time_scale=1.0,
|
11 |
+
no_temporal_pos_emb=True,
|
12 |
+
from_pretrained="PixArt-XL-2-1024-MS.pth",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
)
|
18 |
+
text_encoder = dict(
|
19 |
+
type="t5",
|
20 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
21 |
+
model_max_length=120,
|
22 |
+
)
|
23 |
+
scheduler = dict(
|
24 |
+
type="dpm-solver",
|
25 |
+
num_sampling_steps=20,
|
26 |
+
cfg_scale=7.0,
|
27 |
+
)
|
28 |
+
dtype = "bf16"
|
29 |
+
|
30 |
+
# Others
|
31 |
+
batch_size = 2
|
32 |
+
seed = 42
|
33 |
+
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x256x256.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PixArt-XL-2-256x256.pth",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# Others
|
30 |
+
batch_size = 2
|
31 |
+
seed = 42
|
32 |
+
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x512x512.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
+
|
36 |
+
# Others
|
37 |
+
batch_size = 2
|
38 |
+
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
configs/pixart/train/16x256x256.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
)
|
30 |
+
text_encoder = dict(
|
31 |
+
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
+
model_max_length=120,
|
34 |
+
shardformer=True,
|
35 |
+
)
|
36 |
+
scheduler = dict(
|
37 |
+
type="iddpm",
|
38 |
+
timestep_respacing="",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Others
|
42 |
+
seed = 42
|
43 |
+
outputs = "outputs"
|
44 |
+
wandb = False
|
45 |
+
|
46 |
+
epochs = 1000
|
47 |
+
log_every = 10
|
48 |
+
ckpt_every = 1000
|
49 |
+
load = None
|
50 |
+
|
51 |
+
batch_size = 8
|
52 |
+
lr = 2e-5
|
53 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
no_temporal_pos_emb=True,
|
23 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
enable_flashattn=True,
|
25 |
+
enable_layernorm_kernel=True,
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 32
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/train/64x512x512.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=64,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
|
18 |
+
# Define model
|
19 |
+
model = dict(
|
20 |
+
type="PixArt-XL/2",
|
21 |
+
space_scale=1.0,
|
22 |
+
time_scale=2 / 3,
|
23 |
+
from_pretrained=None,
|
24 |
+
enable_flashattn=True,
|
25 |
+
enable_layernorm_kernel=True,
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
micro_batch_size=128,
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=120,
|
36 |
+
shardformer=True,
|
37 |
+
)
|
38 |
+
scheduler = dict(
|
39 |
+
type="iddpm",
|
40 |
+
timestep_respacing="",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Others
|
44 |
+
seed = 42
|
45 |
+
outputs = "outputs"
|
46 |
+
wandb = False
|
47 |
+
|
48 |
+
epochs = 1000
|
49 |
+
log_every = 10
|
50 |
+
ckpt_every = 250
|
51 |
+
load = None
|
52 |
+
|
53 |
+
batch_size = 4
|
54 |
+
lr = 2e-5
|
55 |
+
grad_clip = 1.0
|