NextWordGPT / transformer.py
chbsaikiran's picture
Initial commit with model trained with loss less than 0.099999
49c48e3
raw
history blame
4.73 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
@dataclass
class Config:
vocab_size: int = 50257
max_seq_len: int = 2048
dim: int = 768
num_layers: int = 12
num_heads: int = 12
dropout: float = 0.1
class MultiHeadAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.n_head = config.num_heads
self.n_embd = config.dim
# Linear projections for Q, K, V
self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd]
self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd]
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.size() # [B, T, n_embd]
# Linear projection and split into Q, K, V
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each
# Reshape for multi-head attention
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
# Attention scores
att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T]
att = F.softmax(att, dim=-1) # [B, n_head, T, T]
att = self.attn_dropout(att) # [B, n_head, T, T]
# Weighted sum of values
y = att @ v # [B, n_head, T, n_embd/n_head]
# Reshape and project
y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd]
y = self.c_proj(y) # [B, T, n_embd]
y = self.resid_dropout(y) # [B, T, n_embd]
return y
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd]
self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd]
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x) # [B, T, 4 * n_embd]
x = F.gelu(x) # [B, T, 4 * n_embd]
x = self.c_proj(x) # [B, T, n_embd]
x = self.dropout(x) # [B, T, n_embd]
return x
class TransformerBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.dim) # [n_embd]
self.attn = MultiHeadAttention(config)
self.ln_2 = nn.LayerNorm(config.dim) # [n_embd]
self.mlp = FeedForward(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x)) # [B, T, n_embd]
x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd]
return x
class DecoderOnlyTransformer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd]
self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd]
self.drop = nn.Dropout(config.dropout)
self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)])
self.ln_f = nn.LayerNorm(config.dim) # [n_embd]
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size]
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, idx):
B, T = idx.size() # [B, T]
# Positional embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T]
# Token and position embeddings
tok_emb = self.wte(idx) # [B, T, n_embd]
pos_emb = self.wpe(pos) # [1, T, n_embd]
# Combine embeddings and apply dropout
x = self.drop(tok_emb + pos_emb) # [B, T, n_embd]
# Transformer blocks
for block in self.blocks:
x = block(x) # [B, T, n_embd]
# Final layer norm and linear projection
x = self.ln_f(x) # [B, T, n_embd]
logits = self.lm_head(x) # [B, T, vocab_size]
return logits