cheberle commited on
Commit
b0e6d60
·
1 Parent(s): 3cd2ead
Files changed (2) hide show
  1. app.py +21 -31
  2. requirements.txt +3 -3
app.py CHANGED
@@ -1,37 +1,27 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
-
3
- # Specify the model paths
4
- base_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
5
- fine_tuned_model_name = "cheberle/autotrain-35swc-b4r9z"
6
-
7
- # Load the tokenizer
8
- tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
9
-
10
- # Load the base model with fine-tuned weights
11
- model = AutoModelForCausalLM.from_pretrained(
12
- fine_tuned_model_name,
13
- device_map="auto",
14
- torch_dtype="auto",
15
- trust_remote_code=True
16
- )
17
 
18
- # Define a simple function for chat
19
- def chat(input_text):
20
- inputs = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
21
- outputs = model.generate(inputs, max_length=100, temperature=0.7)
22
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
- return response
24
 
25
- # Gradio UI
26
- import gradio as gr
 
 
 
 
 
27
 
 
28
  interface = gr.Interface(
29
- fn=chat,
30
- inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
31
- outputs="text",
32
- title="Chat with DeepSeek Fine-tuned Model",
33
- description="This is a fine-tuned version of the DeepSeek R1 Distill Qwen-7B model. Ask me anything!"
34
  )
35
 
36
- if __name__ == "__main__":
37
- interface.launch()
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Load the model and tokenizer
5
+ model_name = "deepseek-ai/DeepSeek-R1"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
 
 
8
 
9
+ def classify_text(input_text):
10
+ # Tokenize the input
11
+ inputs = tokenizer(input_text, return_tensors="pt")
12
+ # Get predictions
13
+ outputs = model(**inputs)
14
+ probabilities = outputs.logits.softmax(dim=-1).detach().numpy()
15
+ return {f"Class {i}": prob for i, prob in enumerate(probabilities[0])}
16
 
17
+ # Create the Gradio interface
18
  interface = gr.Interface(
19
+ fn=classify_text,
20
+ inputs=gr.Textbox(label="Enter Text"),
21
+ outputs=gr.Label(label="Class Probabilities"),
22
+ title="DeepSeek-R1 Text Classification",
23
+ description="A text classification app powered by DeepSeek-R1."
24
  )
25
 
26
+ # Launch the app
27
+ interface.launch()
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  huggingface_hub==0.25.2
2
  transformers
3
- accelerate
4
- gradio
5
- torch
 
1
  huggingface_hub==0.25.2
2
  transformers
3
+ torch
4
+ datasets
5
+ scipy