Interp_Imaging / app.py
marta-marta's picture
Incorporating an elasticity tensor to help pinpoint useful structures
be50c8a
raw
history blame
20 kB
import numpy as np
from scipy import signal
import math
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
import streamlit as st
from elasticity import elasticity
# Needed in requirements.txt for importing to use in the transformers model
import tensorflow
# HELLO HUGGING FACE
########################################################################################################################
# Define the piecewise functions to create each of the possible shapes
def basic_box_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
# Creates the outside edges of the box
for i in range(image_size):
for j in range(image_size):
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
A[i][j] = 1
return A
def back_slash_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == j:
A[i][j] = 1
return A
def forward_slash_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == (image_size - 1) - j:
A[i][j] = 1
return A
def hot_dog_array(image_size):
# Places pixels down the vertical axis to split the box
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def hamburger_array(image_size):
# Places pixels across the horizontal axis to split the box
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def center_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
A[i][j] = 1
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def update_array(array_original, array_new, image_size):
A = array_original
for i in range(image_size):
for j in range(image_size):
if array_new[i][j] == 1:
A[i][j] = 1
return A
def add_pixels(array_original, additional_pixels, image_size):
# Adds pixels to the thickness of each component of the box
A = array_original
A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for dens in range(additional_pixels):
for i in range(1, image_size - 1):
for j in range(1, image_size - 1):
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
A_updated[i][j] = 1
A = update_array(A, A_updated, image_size)
return A
########################################################################################################################
# Create the desired shape using the density and thickness
def basic_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def horizontal_vertical_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Place pixels across the horizontal and vertical axes to split the box
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def diagonal_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Add pixels along the diagonals of the box
A = update_array(A, back_slash_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# Adds pixels to the thickness of each component of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, forward_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hamburger_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
# A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
# A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def center_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, center_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
########################################################################################################################
# The function to add thickness to struts in an array
def add_thickness(array_original, thickness: int) -> np.ndarray:
"""
:param array_original: [ndarray] - an array with thickness 1 of any shape type
:param thickness: [int] - the number of pixels to be activated surrounding the base shape
:return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated
based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
"""
A = array_original
if thickness == 0: # want an array of all 0's for thickness = 0
A[A > 0] = 0
else:
filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
filter = np.zeros((filter_size, filter_size))
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
# The filter is made into a '+' shape using these functions
convolution = signal.convolve2d(A, filter, mode='same')
A = np.where(convolution <= 1, convolution, 1)
return A
# The function to efficiently combine arrays in a list
def combine_arrays(arrays):
output_array = np.sum(arrays, axis=0) # Add the list of arrays
output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1
return output_array
########################################################################################################################
# Explain the App
st.header("Multi-Lattice Generator Through a VAE Model")
st.write("Shape: the type of shape the lattice will have")
st.write("Density: the pixel intensity of each activated pixel")
st.write("Thickness: the additional pixels added to the base shape")
st.write("Interpolation Length: the number of internal interpolation points that will exist in the interpolation")
########################################################################################################################
# Provide the Options for users to select from
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
# Provide User Options
st.header("Option 1: Perform a Linear Interpolation")
# Select Shapes
shape_1 = st.selectbox("Shape 1", shape_options)
shape_2 = st.selectbox("Shape 2", shape_options)
# Select Density
density_1 = st.selectbox("Density 1:", density_options, index=len(density_options)-1)
density_2 = st.selectbox("Density 2:", density_options, index=len(density_options)-1)
# Select Thickness
thickness_1 = st.selectbox("Thickness 1", thickness_options)
thickness_2 = st.selectbox("Thickness 2", thickness_options)
# Select Interpolation Length
interp_length = st.selectbox("Interpolation Length", interpolation_options, index=2)
# Define the function to generate unit cells based on user inputs
def generate_unit_cell(shape, density, thickness):
return globals()[shape](int(thickness), float(density), 28)
def display_arrays(array1, array2, label_1, label_2):
# A Function to plot two arrays side by side in streamlit
# Create two columns
col1, col2 = st.columns(2)
# Populate the first column with array1
col1.header(label_1)
col1.write(array1)
# Populate the second column with array2
col2.header(label_2)
col2.write(array2)
# Generate the endpoints
number_1 = generate_unit_cell(shape_1, density_1, thickness_1)
number_2 = generate_unit_cell(shape_2, density_2, thickness_2)
# Calculate the elasticity for the shapes:
elasticity_1 = elasticity(number_1)
elasticity_2 = elasticity(number_2)
# Display the endpoints to the user
if st.button("Generate Endpoint Images and Elasticity Tensors"):
plt.figure(1)
st.header("Endpoints to be generated:")
plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1), plt.title("Shape 1:")
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1), plt.title("Shape 2:")
plt.figure(1)
st.pyplot(plt.figure(1))
########################################################################################################################
# Load the models from existing huggingface model
# Load the encoder model
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder")
# Load the decoder model
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder")
########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
########################################################################################################################
# Establish the Framework for a LINEAR Interpolation
number_internal = int(interp_length) # the number of interpolations that the model will find between two points
num_interp = number_internal + 2 # the number of images to be pictured
latent_matrix = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
latent_matrix.append(new_column)
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
########################################################################################################################
# Plotting the Interpolation in 2D Using Chosen Points
if st.button("Generate Linear Interpolation"):
# plt.figure(2)
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
print(len(linear_interp_latent))
linear_predicted_interps = []
figure_2 = np.zeros((28, 28 * num_interp))
for i in range(num_interp):
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
linear_predicted_interps.append(generated_image[:, :, -1])
# plt.figure_2(figsize=(15, 15))
# plt.imshow(figure, cmap='gray')
# plt.figure(2)
# st.pyplot(figure_2)
st.image(figure_2)
########################################################################################################################
# Provide User Options
st.header("Option 2: Perform a Mesh Interpolation")
st.write("The four corners of this mesh are defined using the shapes in both Option 1 and Option 2")
# Select Shapes
shape_3 = st.selectbox("Shape 3", shape_options)
shape_4 = st.selectbox("Shape 4", shape_options)
# Select Density
density_3 = st.selectbox("Density 3:", density_options, index=len(density_options)-1)
density_4 = st.selectbox("Density 4:", density_options, index=len(density_options)-1)
# Select Thickness
thickness_3 = st.selectbox("Thickness 3", thickness_options)
thickness_4 = st.selectbox("Thickness 4", thickness_options)
# Generate the endpoints
number_3 = generate_unit_cell(shape_3, density_3, thickness_3)
number_4 = generate_unit_cell(shape_4, density_4, thickness_4)
# Display the endpoints to the user
if st.button("Generate Endpoint Images for Mesh and Elasticity Tensors"):
plt.figure(1)
st.header("Endpoints to be generated:")
elasticity_3 = elasticity(number_3)
elasticity_4 = elasticity(number_4)
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
display_arrays(elasticity_3, elasticity_4, "Elasticity Tensor of Shape 3", "Elasticity Tensor of Shape 4")
plt.subplot(2, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 3), plt.imshow(number_3, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 4), plt.imshow(number_4, cmap='gray', vmin=0, vmax=1)
plt.figure(1)
st.pyplot(plt.figure(1))
########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_3_expand = np.expand_dims(np.expand_dims(number_3, axis=2), axis=0)
number_4_expand = np.expand_dims(np.expand_dims(number_4, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_3 = encoder_model_boxes.predict(number_3_expand)[0]
latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
########################################################################################################################
# Plot a Mesh Gridded Interpolation
if st.button("Generate Mesh Interpolation"):
latent_matrix_2 = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
latent_matrix_2.append(new_column)
latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed
mesh = [] # This will create a mesh by interpolating between the two interpolations
for column in range(num_interp):
row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp)
mesh.append(row)
mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation
generator_model = decoder_model_boxes
figure_3 = np.zeros((28 * num_interp, 28 * num_interp))
mesh_predicted_interps = []
for i in range(num_interp):
for j in range(num_interp):
generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
figure_3[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
mesh_predicted_interps.append(generated_image[:, :, -1])
st.image(figure_3)