|
|
|
import keras |
|
|
|
import sklearn.model_selection |
|
|
|
import numpy |
|
|
|
import os |
|
|
|
|
|
from tensorflow.python.framework.ops import disable_eager_execution |
|
disable_eager_execution() |
|
|
|
|
|
import tensorflow as tf |
|
sess = tf.compat.v1.Session() |
|
|
|
from keras import backend as K |
|
K.set_session(sess) |
|
|
|
|
|
VERBOSE = 1 |
|
|
|
|
|
def load_data(): |
|
|
|
curves = numpy.load('data_curves.npz')['curves'] |
|
geometry = numpy.load('data_geometry.npz')['geometry'] |
|
constants = numpy.load('constants.npz') |
|
S = constants['S'] |
|
N = constants['N'] |
|
D = constants['D'] |
|
F = constants['F'] |
|
G = constants['G'] |
|
|
|
|
|
new_curves = numpy.zeros((S*N, D * F)) |
|
for i, curveset in enumerate(curves): |
|
new_curves[i, :] = curveset.T.flatten() / 1000000 |
|
|
|
new_geometry = numpy.zeros((S*N, G * G * G)) |
|
for i, geometryset in enumerate(geometry): |
|
new_geometry[i, :] = geometryset.T.flatten() |
|
|
|
|
|
return curves, geometry, S, N, D, F, G, new_curves, new_geometry |
|
|
|
import gradio |
|
import pandas |
|
|
|
class Network(object): |
|
|
|
def __init__(self, structure, weights): |
|
|
|
self.curves = 0 |
|
self.new_curves = 0 |
|
self.geometry = 0 |
|
self.new_geometry = 0 |
|
self.S = 0 |
|
self.N = 0 |
|
self.D = 0 |
|
self.F = 0 |
|
self.G = 0 |
|
|
|
|
|
with open(structure, 'r') as file: |
|
self.network = keras.models.model_from_json(file.read()) |
|
self.network.load_weights(weights) |
|
|
|
|
|
self._load_data() |
|
|
|
def _load_data(self): |
|
self.curves, self.geometry, self.S, self.N, self.D, self.F, self.G, self.new_curves, self.new_geometry = load_data() |
|
|
|
def analysis(self, idx=None): |
|
print(idx) |
|
|
|
if idx is None: |
|
idx = numpy.random.randint(1, self.S * self.N) |
|
else: |
|
idx = int(idx) |
|
|
|
|
|
data_input = self.new_geometry[idx:(idx+1), :] |
|
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F') |
|
|
|
|
|
predicted_output = self.network.predict(data_input) |
|
true_output = self.new_curves[idx].reshape((3, self.F)) |
|
predicted_output = predicted_output.reshape((3, self.F)) |
|
|
|
f = numpy.linspace(0.05, 2.0, 64) |
|
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"}) |
|
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) |
|
df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) |
|
|
|
|
|
return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1) |
|
|
|
def synthesis(self, idx=None): |
|
print(idx) |
|
|
|
if idx is None: |
|
idx = numpy.random.randint(1, self.S * self.N) |
|
else: |
|
idx = int(idx) |
|
|
|
|
|
data_input = self.new_curves[idx:(idx+1), :] |
|
other_data_input = data_input.reshape((3, self.F)) |
|
|
|
|
|
predicted_output = self.network.predict(data_input) |
|
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F') |
|
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F') |
|
|
|
|
|
return predicted_output, true_output |
|
|
|
|
|
def synthesis_from_spectrum(self, other_data_input): |
|
|
|
data_input = other_data_input.reshape((1, 3*self.F)) |
|
|
|
|
|
predicted_output = self.network.predict(data_input) |
|
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F') |
|
|
|
|
|
return predicted_output |
|
|
|
def get_geometry(self, idx=None): |
|
|
|
if idx is None: |
|
idx = numpy.random.randint(1, self.S * self.N) |
|
else: |
|
idx = int(idx) |
|
|
|
idx = int(idx) |
|
|
|
|
|
data_input = self.new_geometry[idx:(idx+1), :] |
|
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F') |
|
|
|
|
|
return other_data_input |
|
|
|
|
|
def get_performance(self, idx=None): |
|
|
|
if idx is None: |
|
idx = numpy.random.randint(1, self.S * self.N) |
|
else: |
|
idx = int(idx) |
|
|
|
idx = int(idx) |
|
|
|
|
|
data_input = self.new_curves[idx:(idx+1), :] |
|
other_data_input = data_input.reshape((3, self.F)) |
|
|
|
f = numpy.linspace(0.05, 2.0, 64) |
|
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"}) |
|
df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) |
|
table = pandas.concat([fd, df_pred], axis=1) |
|
|
|
|
|
return table |
|
|
|
|
|
|
|
|
|
|
|
|
|
import plotly.graph_objects as go |
|
import numpy as np |
|
|
|
|
|
def plotly_fig(values): |
|
X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j] |
|
fig = go.Figure(data=go.Volume( |
|
x=X.flatten(), |
|
y=Y.flatten(), |
|
z=Z.flatten(), |
|
value=values.flatten(), |
|
isomin=-0.1, |
|
isomax=0.8, |
|
opacity=0.1, |
|
surface_count=21, |
|
)) |
|
return fig |
|
|
|
|
|
def performance(index): |
|
forward_net = Network("16forward_structure.json", "16forward_weights.h5") |
|
return forward_net.get_performance(index) |
|
|
|
def geometry(index): |
|
forward_net = Network("16forward_structure.json", "16forward_weights.h5") |
|
values = forward_net.get_geometry(index) |
|
return plotly_fig(values) |
|
|
|
global forward_net |
|
forward_net = Network("16forward_structure.json", "16forward_weights.h5") |
|
|
|
def simple_analysis(index): |
|
global forward_net |
|
return forward_net.analysis(index) |
|
|
|
def simple_synthesis(index): |
|
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5") |
|
pred, true = inverse_net.synthesis(index) |
|
return plotly_fig(pred), plotly_fig(true) |
|
|
|
def synthesis_from_spectrum(df): |
|
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5") |
|
pred = inverse_net.synthesis_from_spectrum(df.to_numpy()) |
|
return plotly_fig(pred) |
|
|
|
|
|
with gradio.Blocks() as analysis_demo: |
|
with gradio.Row(): |
|
with gradio.Column(): |
|
num = gradio.Number(42, label="data index") |
|
btn1 = gradio.Button("Select") |
|
with gradio.Column(): |
|
geo = gradio.Plot(label="Geometry") |
|
|
|
with gradio.Row(): |
|
btn2 = gradio.Button("Estimate Spectrum") |
|
|
|
with gradio.Row(): |
|
with gradio.Column(): |
|
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted") |
|
|
|
with gradio.Column(): |
|
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True") |
|
|
|
btn1.click(fn=geometry, inputs=[num], outputs=[geo]) |
|
btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true]) |
|
|
|
with gradio.Blocks() as synthesis_demo: |
|
with gradio.Row(): |
|
with gradio.Column(): |
|
num = gradio.Number(42, label="data index") |
|
btn1 = gradio.Button("Select") |
|
with gradio.Column(): |
|
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance") |
|
|
|
with gradio.Row(): |
|
btn2 = gradio.Button("Synthesize Geometry") |
|
|
|
with gradio.Row(): |
|
with gradio.Column(): |
|
pred = gradio.Plot(label="Predicted") |
|
|
|
with gradio.Column(): |
|
true = gradio.Plot(label="True") |
|
|
|
btn1.click(fn=performance, inputs=[num], outputs=[perf]) |
|
btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true]) |
|
|
|
|
|
with gradio.Blocks() as synthesis_demo2: |
|
with gradio.Row(): |
|
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance") |
|
|
|
with gradio.Row(): |
|
btn2 = gradio.Button("Synthesize Geometry") |
|
|
|
with gradio.Row(): |
|
pred = gradio.Plot(label="Predicted") |
|
|
|
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred]) |
|
|
|
|
|
with gradio.Blocks() as synthesis_demo3: |
|
with gradio.Row(): |
|
perf = gradio.DataFrame(headers=['Surge', 'Heave', 'Pitch'], value=numpy.zeros((64, 3)).tolist()) |
|
|
|
with gradio.Row(): |
|
btn2 = gradio.Button("Synthesize Geometry") |
|
|
|
with gradio.Row(): |
|
pred = gradio.Plot(label="Predicted") |
|
|
|
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred]) |
|
|
|
|
|
with gradio.Blocks() as intro: |
|
with gradio.Row(): |
|
with gradio.Column(): |
|
title = gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks") |
|
with gradio.Column(): |
|
title = gradio.Markdown("Christopher McComb\n[Design Research Collective](https://cmudrc.github.io/)\nCarnegie Mellon University") |
|
with gradio.Column(): |
|
download = gradio.File(value="McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf") |
|
with gradio.Row(): |
|
gradio.Markdown("The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structures.\n\nThe paper linked to the left provides details about the implementation. This site contains demos of the trained networks.") |
|
|
|
all_synthesis_demos = gradio.TabbedInterface([synthesis_demo, synthesis_demo2, synthesis_demo3], ["Spectrum from Dataset", "Spectrum from File", "Spectrum from DataFrame"]) |
|
|
|
all_analysis_demos = gradio.TabbedInterface([analysis_demo], ["Geometry from Data"]) |
|
|
|
demo = gradio.TabbedInterface([intro, all_analysis_demos, all_synthesis_demos], ["About", "Analysis", "Synthesis"]) |
|
demo.launch(debug=True) |