Spaces:
Runtime error
Runtime error
""" | |
This module provides an interface for classifying images using the ResNet-18 model. | |
The interface allows users to upload an image and receive the top 3 predicted labels. | |
""" | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
from datasets import load_dataset | |
from PIL import Image | |
# Load dataset and get test image | |
dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) | |
test_image = dataset["test"]["image"][0] | |
# Initialize the image processor and model | |
image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-18") | |
model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-18").to("cuda") | |
def predict(image: Image, top_k: int = 3) -> dict: | |
""" | |
Predicts the top 'top_k' labels for an image using the ResNet-18 model. | |
Args: | |
image (Image): The input image as a PIL Image object. | |
top_k (int): The number of top predictions to return. | |
Returns: | |
dict: A dictionary with the top 'top_k' labels and their probabilities. | |
""" | |
inputs = image_processor(image, return_tensors="pt").to("cuda") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
# Apply softmax to logits to get probabilities | |
probabilities = torch.softmax(logits, dim=-1) | |
# Get the top 'top_k' probabilities and their corresponding indices | |
top_k_probs, top_k_indices = torch.topk(input=probabilities, k=top_k, dim=-1) | |
# Map the indices to labels and probabilities | |
predicted_labels = { | |
model.config.id2label[idx.item()]: prob.item() | |
for idx, prob in zip(top_k_indices[0], top_k_probs[0]) | |
} | |
return predicted_labels | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
title="Classifying Images with ResNet-18", | |
description="Upload an image to predict the top 3 labels.", | |
examples=[test_image] | |
) | |
# Launch the Gradio interface | |
demo.launch() | |