Spaces:
Runtime error
Runtime error
import numpy as np | |
from scipy.integrate import solve_ivp | |
import matplotlib.pyplot as plt | |
class SelfAwareNetwork: | |
def __init__(self, num_neurons, learning_rate): | |
self.num_neurons = num_neurons | |
self.learning_rate = learning_rate | |
self.weights = np.random.rand(num_neurons) | |
self.state = np.zeros(num_neurons) | |
def activation_function(self, x, t, n): | |
hbar = 1.0545718e-34 # Reduced Planck constant in J·s | |
omega = 1/np.sqrt(137) # Angular frequency related to fine-structure constant | |
term1 = hbar * omega * (n + 0.5) | |
term2 = np.sin(omega * x + np.pi/4) * np.exp(-t) | |
return term1 + term2 | |
def neuron_dynamics(self, t, y): | |
n = np.arange(self.num_neurons) | |
dydt = -y + self.activation_function(y, t, n) | |
return dydt | |
def update_weights(self, state): | |
self.weights += self.learning_rate * state | |
def solve_dynamics(self, t_span, y0): | |
sol = solve_ivp(self.neuron_dynamics, t_span, y0, method='RK45', vectorized=False) | |
return sol.t, sol.y | |
def evaluate_performance(self, target_state): | |
error = np.linalg.norm(self.state - target_state) | |
return error | |
def adjust_learning_rate(self, performance_metric): | |
if performance_metric > 0.1: | |
self.learning_rate *= 0.9 | |
else: | |
self.learning_rate *= 1.1 | |
def self_optimize(self, target_state, t_span, y0): | |
t, y = self.solve_dynamics(t_span, y0) | |
self.state = y[:, -1] | |
performance = self.evaluate_performance(target_state) | |
self.adjust_learning_rate(performance) | |
self.update_weights(self.state) | |
def plot_state_evolution(self, t, y): | |
plt.plot(t, y.T) | |
plt.xlabel('Time') | |
plt.ylabel('Neuron States') | |
plt.title('State Evolution of Neurons') | |
plt.show() | |
# Example usage | |
network = SelfAwareNetwork(num_neurons=3, learning_rate=0.01) # Reduced the number of neurons | |
t_span = (0, 5) # Shortened the time span | |
y0 = np.random.rand(3) # Adjusted for the reduced number of neurons | |
target_state = np.ones(3) | |
network.self_optimize(target_state, t_span, y0) | |
t, y = network.solve_dynamics(t_span, y0) | |
network.plot_state_evolution(t, y) | |