Spaces:
Build error
Build error
"""Wrapper around OpenAI embedding models.""" | |
from typing import Any, Dict, List, Optional | |
from pydantic import BaseModel, Extra, root_validator | |
from langchain.embeddings.base import Embeddings | |
from langchain.utils import get_from_dict_or_env | |
from tenacity import ( | |
retry, | |
retry_if_exception_type, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
from openai.error import Timeout, APIError, APIConnectionError, RateLimitError | |
class OpenAIEmbeddings(BaseModel, Embeddings): | |
"""Wrapper around OpenAI embedding models. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``OPENAI_API_KEY`` set with your API key or pass it | |
as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.embeddings import OpenAIEmbeddings | |
openai = OpenAIEmbeddings(openai_api_key="my-api-key") | |
""" | |
client: Any #: :meta private: | |
document_model_name: str = "text-embedding-ada-002" | |
query_model_name: str = "text-embedding-ada-002" | |
openai_api_key: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
# TODO: deprecate this | |
def get_model_names(cls, values: Dict) -> Dict: | |
"""Get model names from just old model name.""" | |
if "model_name" in values: | |
if "document_model_name" in values: | |
raise ValueError( | |
"Both `model_name` and `document_model_name` were provided, " | |
"but only one should be." | |
) | |
if "query_model_name" in values: | |
raise ValueError( | |
"Both `model_name` and `query_model_name` were provided, " | |
"but only one should be." | |
) | |
model_name = values.pop("model_name") | |
values["document_model_name"] = f"text-search-{model_name}-doc-001" | |
values["query_model_name"] = f"text-search-{model_name}-query-001" | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
openai_api_key = get_from_dict_or_env( | |
values, "openai_api_key", "OPENAI_API_KEY" | |
) | |
try: | |
import openai | |
openai.api_key = openai_api_key | |
values["client"] = openai.Embedding | |
except ImportError: | |
raise ValueError( | |
"Could not import openai python package. " | |
"Please it install it with `pip install openai`." | |
) | |
return values | |
def _embedding_func(self, text: str, *, engine: str) -> List[float]: | |
"""Call out to OpenAI's embedding endpoint with exponential backoff.""" | |
# replace newlines, which can negatively affect performance. | |
text = text.replace("\n", " ") | |
return self.client.create(input=[text], engine=engine)["data"][0]["embedding"] | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Call out to OpenAI's embedding endpoint for embedding search docs. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
responses = [ | |
self._embedding_func(text, engine=self.document_model_name) | |
for text in texts | |
] | |
return responses | |
def embed_query(self, text: str) -> List[float]: | |
"""Call out to OpenAI's embedding endpoint for embedding query text. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
embedding = self._embedding_func(text, engine=self.query_model_name) | |
return embedding |