File size: 10,434 Bytes
8f6647c 6158da4 8f6647c e029e22 f51bb92 f2daaee 8f6647c e029e22 d697aa5 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 d697aa5 8f6647c d697aa5 8f6647c e029e22 aaaac46 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c e029e22 8f6647c fc2cb23 8f6647c fc2cb23 4de6b1a 8f6647c 4de6b1a 8f6647c 4de6b1a 8f6647c 4de6b1a 8f6647c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import json
import yaml
import os
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat_processor.chat_processor import ChatProcessor
from modules.config.constants import LLAMA_PATH
from modules.chat.helpers import get_sources
import copy
from typing import Optional
from dotenv import load_dotenv
load_dotenv()
USER_TIMEOUT = 60_000
SYSTEM = "System 🖥️"
LLM = "LLM 🧠"
AGENT = "Agent <>"
YOU = "You 😃"
ERROR = "Error 🚫"
class Chatbot:
def __init__(self):
"""
Initialize the Chatbot class.
"""
self.config = self._load_config()
def _load_config(self):
"""
Load the configuration from a YAML file.
"""
with open("modules/config/config.yml", "r") as f:
return yaml.safe_load(f)
@no_type_check
async def setup_llm(self):
"""
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
"""
llm_settings = cl.user_session.get("llm_settings", {})
chat_profile, retriever_method, memory_window, llm_style = (
llm_settings.get("chat_model"),
llm_settings.get("retriever_method"),
llm_settings.get("memory_window"),
llm_settings.get("llm_style"),
)
chain = cl.user_session.get("chain")
memory = chain.memory if chain else []
old_config = copy.deepcopy(self.config)
self.config["vectorstore"]["db_option"] = retriever_method
self.config["llm_params"]["memory_window"] = memory_window
self.config["llm_params"]["llm_style"] = llm_style
self.config["llm_params"]["llm_loader"] = chat_profile
self.llm_tutor.update_llm(
old_config, self.config
) # update only attributes that are changed
self.chain = self.llm_tutor.qa_bot(memory=memory)
tags = [chat_profile, self.config["vectorstore"]["db_option"]]
self.chat_processor.config = self.config
cl.user_session.set("chain", self.chain)
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chat_processor", self.chat_processor)
@no_type_check
async def update_llm(self, new_settings: Dict[str, Any]):
"""
Update the LLM settings and reinitialize the LLM with the new settings.
Args:
new_settings (Dict[str, Any]): The new settings to update.
"""
cl.user_session.set("llm_settings", new_settings)
await self.inform_llm_settings()
await self.setup_llm()
async def make_llm_settings_widgets(self, config=None):
"""
Create and send the widgets for LLM settings configuration.
Args:
config: The configuration to use for setting up the widgets.
"""
config = config or self.config
await cl.ChatSettings(
[
cl.input_widget.Select(
id="chat_model",
label="Model Name (Default GPT-3)",
values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"],
initial_index=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"].index(config["llm_params"]["llm_loader"]),
),
cl.input_widget.Select(
id="retriever_method",
label="Retriever (Default FAISS)",
values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(config["vectorstore"]["db_option"])
),
cl.input_widget.Slider(
id="memory_window",
label="Memory Window (Default 3)",
initial=3,
min=0,
max=10,
step=1,
),
cl.input_widget.Switch(
id="view_sources", label="View Sources", initial=False
),
cl.input_widget.Select(
id="llm_style",
label="Type of Conversation (Default Normal)",
values=["Normal", "ELI5", "Socratic"],
initial_index=0,
),
]
).send()
@no_type_check
async def inform_llm_settings(self):
"""
Inform the user about the updated LLM settings and display them as a message.
"""
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
llm_tutor = cl.user_session.get("llm_tutor")
settings_dict = {
"model": llm_settings.get("chat_model"),
"retriever": llm_settings.get("retriever_method"),
"memory_window": llm_settings.get("memory_window"),
"num_docs_in_db": (
len(llm_tutor.vector_db)
if llm_tutor and hasattr(llm_tutor, "vector_db")
else 0
),
"view_sources": llm_settings.get("view_sources"),
}
await cl.Message(
author=SYSTEM,
content="LLM settings have been updated. You can continue with your Query!",
elements=[
cl.Text(
name="settings",
display="side",
content=json.dumps(settings_dict, indent=4),
language="json",
),
],
).send()
async def set_starters(self):
"""
Set starter messages for the chatbot.
"""
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transformers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didn't understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
def rename(self, orig_author: str):
"""
Rename the original author to a more user-friendly name.
Args:
orig_author (str): The original author's name.
Returns:
str: The renamed author.
"""
rename_dict = {"Chatbot": "AI Tutor"}
return rename_dict.get(orig_author, orig_author)
async def start(self):
"""
Start the chatbot, initialize settings widgets,
and display and load previous conversation if chat logging is enabled.
"""
await cl.Message(content="Welcome back! Setting up your session...").send()
await self.make_llm_settings_widgets(self.config)
user = cl.user_session.get("user")
self.user = {
"user_id": user.identifier,
"session_id": "1234",
}
cl.user_session.set("user", self.user)
self.chat_processor = ChatProcessor(self.config, self.user)
self.llm_tutor = LLMTutor(self.config, user=self.user)
if self.config["chat_logging"]["log_chat"]:
# get previous conversation of the user
memory = self.chat_processor.processor.prev_conv
if len(self.chat_processor.processor.prev_conv) > 0:
for idx, conv in enumerate(self.chat_processor.processor.prev_conv):
await cl.Message(
author="User", content=conv[0], type="user_message"
).send()
await cl.Message(author="AI Tutor", content=conv[1]).send()
else:
memory = []
self.chain = self.llm_tutor.qa_bot(memory=memory)
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chain", self.chain)
cl.user_session.set("chat_processor", self.chat_processor)
async def on_chat_end(self):
"""
Handle the end of the chat session by sending a goodbye message.
# TODO: Not used as of now - useful when the implementation for the conversation limiting is implemented
"""
await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
async def main(self, message):
"""
Process and Display the Conversation.
Args:
message: The incoming chat message.
"""
chain = cl.user_session.get("chain")
llm_settings = cl.user_session.get("llm_settings", {})
view_sources = llm_settings.get("view_sources", False)
processor = cl.user_session.get("chat_processor")
res = await processor.rag(message.content, chain)
# TODO: STREAM MESSAGE
msg = cl.Message(content="")
await msg.send()
output = {}
for chunk in res:
if 'answer' in chunk:
await msg.stream_token(chunk['answer'])
for key in chunk:
if key not in output:
output[key] = chunk[key]
else:
output[key] += chunk[key]
answer = output.get("answer", output.get("result"))
answer_with_sources, source_elements, sources_dict = get_sources(
output, answer, view_sources=view_sources
)
processor._process(message.content, answer, sources_dict)
await cl.Message(content=answer_with_sources, elements=source_elements).send()
def auth_callback(self, username: str, password: str) -> Optional[cl.User]:
return cl.User(
identifier=username,
metadata={"role": "admin", "provider": "credentials"},
)
chatbot = Chatbot()
cl.password_auth_callback(chatbot.auth_callback)
cl.set_starters(chatbot.set_starters)
cl.author_rename(chatbot.rename)
cl.on_chat_start(chatbot.start)
cl.on_chat_end(chatbot.on_chat_end)
cl.on_message(chatbot.main)
cl.on_settings_update(chatbot.update_llm)
|