File size: 9,383 Bytes
fc2cb23
 
1e2550f
 
e029e22
e165ea5
1e2550f
 
 
 
 
 
 
 
 
 
 
e165ea5
fc2cb23
 
e165ea5
 
b409192
 
 
 
 
 
 
 
e165ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b409192
 
 
 
 
 
 
 
2719f21
 
b409192
 
 
e165ea5
 
b409192
 
 
 
 
 
 
 
e165ea5
fc2cb23
e029e22
fc2cb23
 
 
 
 
 
 
 
 
e029e22
fc2cb23
 
 
 
 
 
 
 
 
 
 
 
 
e029e22
 
fc2cb23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e029e22
fc2cb23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719f21
fc2cb23
b409192
 
 
fc2cb23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e029e22
 
 
fc2cb23
 
b409192
fc2cb23
 
 
 
 
 
 
 
 
b409192
e029e22
 
 
 
4de6b1a
 
 
 
c658776
e029e22
 
 
 
 
 
 
 
c658776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e029e22
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from langchain_core.prompts import ChatPromptTemplate

# from modules.chat.langchain.utils import
from langchain_community.chat_message_histories import ChatMessageHistory
from modules.chat.base import BaseRAG
from langchain_core.prompts import PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
from langchain_core.runnables.utils import ConfigurableFieldSpec
from .utils import (
    CustomConversationalRetrievalChain,
    create_history_aware_retriever,
    create_stuff_documents_chain,
    create_retrieval_chain,
    return_questions,
    CustomRunnableWithHistory,
    BaseChatMessageHistory,
    InMemoryHistory,
)


class Langchain_RAG_V1(BaseRAG):
    def __init__(
        self,
        llm,
        memory,
        retriever,
        qa_prompt: str,
        rephrase_prompt: str,
        config: dict,
        callbacks=None,
    ):
        """
        Initialize the Langchain_RAG class.

        Args:
            llm (LanguageModelLike): The language model instance.
            memory (BaseChatMessageHistory): The chat message history instance.
            retriever (BaseRetriever): The retriever instance.
            qa_prompt (str): The QA prompt string.
            rephrase_prompt (str): The rephrase prompt string.
        """
        self.llm = llm
        self.config = config
        # self.memory = self.add_history_from_list(memory)
        self.memory = ConversationBufferWindowMemory(
            k=self.config["llm_params"]["memory_window"],
            memory_key="chat_history",
            return_messages=True,
            output_key="answer",
            max_token_limit=128,
        )
        self.retriever = retriever
        self.qa_prompt = qa_prompt
        self.rephrase_prompt = rephrase_prompt
        self.store = {}

        self.qa_prompt = PromptTemplate(
            template=self.qa_prompt,
            input_variables=["context", "chat_history", "input"],
        )

        self.rag_chain = CustomConversationalRetrievalChain.from_llm(
            llm=llm,
            chain_type="stuff",
            retriever=retriever,
            return_source_documents=True,
            memory=self.memory,
            combine_docs_chain_kwargs={"prompt": self.qa_prompt},
            response_if_no_docs_found="No context found",
        )

    def add_history_from_list(self, history_list):
        """
        TODO: Add messages from a list to the chat history.
        """
        history = []

        return history

    async def invoke(self, user_query, config):
        """
        Invoke the chain.

        Args:
            kwargs: The input variables.

        Returns:
            dict: The output variables.
        """
        res = await self.rag_chain.acall(user_query["input"])
        return res


class QuestionGenerator:
    """
    Generate a question from the LLMs response and users input and past conversations.
    """

    def __init__(self):
        pass

    def generate_questions(self, query, response, chat_history, context, config):
        questions = return_questions(query, response, chat_history, context, config)
        return questions


class Langchain_RAG_V2(BaseRAG):
    def __init__(
        self,
        llm,
        memory,
        retriever,
        qa_prompt: str,
        rephrase_prompt: str,
        config: dict,
        callbacks=None,
    ):
        """
        Initialize the Langchain_RAG class.

        Args:
            llm (LanguageModelLike): The language model instance.
            memory (BaseChatMessageHistory): The chat message history instance.
            retriever (BaseRetriever): The retriever instance.
            qa_prompt (str): The QA prompt string.
            rephrase_prompt (str): The rephrase prompt string.
        """
        self.llm = llm
        self.memory = self.add_history_from_list(memory)
        self.retriever = retriever
        self.qa_prompt = qa_prompt
        self.rephrase_prompt = rephrase_prompt
        self.store = {}

        # Contextualize question prompt
        contextualize_q_system_prompt = rephrase_prompt or (
            "Given a chat history and the latest user question "
            "which might reference context in the chat history, "
            "formulate a standalone question which can be understood "
            "without the chat history. Do NOT answer the question, just "
            "reformulate it if needed and otherwise return it as is."
        )
        self.contextualize_q_prompt = ChatPromptTemplate.from_template(
            contextualize_q_system_prompt
        )

        # History-aware retriever
        self.history_aware_retriever = create_history_aware_retriever(
            self.llm, self.retriever, self.contextualize_q_prompt
        )

        # Answer question prompt
        qa_system_prompt = qa_prompt or (
            "You are an assistant for question-answering tasks. Use "
            "the following pieces of retrieved context to answer the "
            "question. If you don't know the answer, just say that you "
            "don't know. Use three sentences maximum and keep the answer "
            "concise."
            "\n\n"
            "{context}"
        )
        self.qa_prompt_template = ChatPromptTemplate.from_template(qa_system_prompt)

        # Question-answer chain
        self.question_answer_chain = create_stuff_documents_chain(
            self.llm, self.qa_prompt_template
        )

        # Final retrieval chain
        self.rag_chain = create_retrieval_chain(
            self.history_aware_retriever, self.question_answer_chain
        )

        self.rag_chain = CustomRunnableWithHistory(
            self.rag_chain,
            get_session_history=self.get_session_history,
            input_messages_key="input",
            history_messages_key="chat_history",
            output_messages_key="answer",
            history_factory_config=[
                ConfigurableFieldSpec(
                    id="user_id",
                    annotation=str,
                    name="User ID",
                    description="Unique identifier for the user.",
                    default="",
                    is_shared=True,
                ),
                ConfigurableFieldSpec(
                    id="conversation_id",
                    annotation=str,
                    name="Conversation ID",
                    description="Unique identifier for the conversation.",
                    default="",
                    is_shared=True,
                ),
                ConfigurableFieldSpec(
                    id="memory_window",
                    annotation=int,
                    name="Number of Conversations",
                    description="Number of conversations to consider for context.",
                    default=1,
                    is_shared=True,
                ),
            ],
        ).with_config(run_name="Langchain_RAG_V2")

        if callbacks is not None:
            self.rag_chain = self.rag_chain.with_config(callbacks=callbacks)

    def get_session_history(
        self, user_id: str, conversation_id: str, memory_window: int
    ) -> BaseChatMessageHistory:
        """
        Get the session history for a user and conversation.

        Args:
            user_id (str): The user identifier.
            conversation_id (str): The conversation identifier.
            memory_window (int): The number of conversations to consider for context.

        Returns:
            BaseChatMessageHistory: The chat message history.
        """
        if (user_id, conversation_id) not in self.store:
            self.store[(user_id, conversation_id)] = InMemoryHistory()
            self.store[(user_id, conversation_id)].add_messages(
                self.memory.messages
            )  # add previous messages to the store. Note: the store is in-memory.
        return self.store[(user_id, conversation_id)]

    async def invoke(self, user_query, config, **kwargs):
        """
        Invoke the chain.

        Args:
            kwargs: The input variables.

        Returns:
            dict: The output variables.
        """
        res = await self.rag_chain.ainvoke(user_query, config, **kwargs)
        res["rephrase_prompt"] = self.rephrase_prompt
        res["qa_prompt"] = self.qa_prompt
        return res

    def stream(self, user_query, config):
        res = self.rag_chain.stream(user_query, config)
        return res

    def add_history_from_list(self, conversation_list):
        """
        Add messages from a list to the chat history.

        Args:
            messages (list): The list of messages to add.
        """
        history = ChatMessageHistory()

        for idx, message in enumerate(conversation_list):
            message_type = (
                message.get("type", None)
                if isinstance(message, dict)
                else getattr(message, "type", None)
            )

            message_content = (
                message.get("content", None)
                if isinstance(message, dict)
                else getattr(message, "content", None)
            )

            if message_type in ["human", "user_message"]:
                history.add_user_message(message_content)
            elif message_type in ["ai", "ai_message"]:
                history.add_ai_message(message_content)

        return history