tutor_dev / apps /chainlit_base /chainlit_base.py
XThomasBU
updates
ae33464
raw
history blame
14.3 kB
import chainlit.data as cl_data
import asyncio
from typing import Any, Dict, no_type_check
import chainlit as cl
from modules.chat.llm_tutor import LLMTutor
from modules.chat.helpers import (
get_sources,
get_history_setup_llm,
)
import copy
import time
from langchain_community.callbacks import get_openai_callback
from config.config_manager import config_manager
USER_TIMEOUT = 60_000
SYSTEM = "System"
LLM = "AI Tutor"
AGENT = "Agent"
YOU = "User"
ERROR = "Error"
config = config_manager.get_config().dict()
class Chatbot:
def __init__(self, config):
"""
Initialize the Chatbot class.
"""
self.config = config
@no_type_check
async def setup_llm(self):
"""
Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor.
#TODO: Clean this up.
"""
start_time = time.time()
llm_settings = cl.user_session.get("llm_settings", {})
(
chat_profile,
retriever_method,
memory_window,
llm_style,
generate_follow_up,
chunking_mode,
) = (
llm_settings.get("chat_model"),
llm_settings.get("retriever_method"),
llm_settings.get("memory_window"),
llm_settings.get("llm_style"),
llm_settings.get("follow_up_questions"),
llm_settings.get("chunking_mode"),
)
chain = cl.user_session.get("chain")
memory_list = cl.user_session.get(
"memory",
(
list(chain.store.values())[0].messages
if len(chain.store.values()) > 0
else []
),
)
conversation_list = get_history_setup_llm(memory_list)
old_config = copy.deepcopy(self.config)
self.config["vectorstore"]["db_option"] = retriever_method
self.config["llm_params"]["memory_window"] = memory_window
self.config["llm_params"]["llm_style"] = llm_style
self.config["llm_params"]["llm_loader"] = chat_profile
self.config["llm_params"]["generate_follow_up"] = generate_follow_up
self.config["splitter_options"]["chunking_mode"] = chunking_mode
self.llm_tutor.update_llm(
old_config, self.config
) # update only llm attributes that are changed
self.chain = self.llm_tutor.qa_bot(
memory=conversation_list,
)
cl.user_session.set("chain", self.chain)
cl.user_session.set("llm_tutor", self.llm_tutor)
print("Time taken to setup LLM: ", time.time() - start_time)
@no_type_check
async def update_llm(self, new_settings: Dict[str, Any]):
"""
Update the LLM settings and reinitialize the LLM with the new settings.
Args:
new_settings (Dict[str, Any]): The new settings to update.
"""
cl.user_session.set("llm_settings", new_settings)
await self.inform_llm_settings()
await self.setup_llm()
async def make_llm_settings_widgets(self, config=None):
"""
Create and send the widgets for LLM settings configuration.
Args:
config: The configuration to use for setting up the widgets.
"""
config = config or self.config
await cl.ChatSettings(
[
cl.input_widget.Select(
id="chat_model",
label="Model Name (Default GPT-3)",
values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
initial_index=[
"local_llm",
"gpt-3.5-turbo-1106",
"gpt-4",
"gpt-4o-mini",
].index(config["llm_params"]["llm_loader"]),
),
cl.input_widget.Select(
id="retriever_method",
label="Retriever (Default FAISS)",
values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
config["vectorstore"]["db_option"]
),
),
cl.input_widget.Slider(
id="memory_window",
label="Memory Window (Default 3)",
initial=3,
min=0,
max=10,
step=1,
),
cl.input_widget.Switch(
id="view_sources", label="View Sources", initial=False
),
cl.input_widget.Switch(
id="stream_response",
label="Stream response",
initial=config["llm_params"]["stream"],
),
cl.input_widget.Select(
id="chunking_mode",
label="Chunking mode",
values=["fixed", "semantic"],
initial_index=1,
),
cl.input_widget.Switch(
id="follow_up_questions",
label="Generate follow up questions",
initial=False,
),
cl.input_widget.Select(
id="llm_style",
label="Type of Conversation (Default Normal)",
values=["Normal", "ELI5"],
initial_index=0,
),
]
).send()
@no_type_check
async def inform_llm_settings(self):
"""
Inform the user about the updated LLM settings and display them as a message.
"""
llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {})
llm_tutor = cl.user_session.get("llm_tutor")
settings_dict = {
"model": llm_settings.get("chat_model"),
"retriever": llm_settings.get("retriever_method"),
"memory_window": llm_settings.get("memory_window"),
"num_docs_in_db": (
len(llm_tutor.vector_db)
if llm_tutor and hasattr(llm_tutor, "vector_db")
else 0
),
"view_sources": llm_settings.get("view_sources"),
"follow_up_questions": llm_settings.get("follow_up_questions"),
}
print("Settings Dict: ", settings_dict)
await cl.Message(
author=SYSTEM,
content="LLM settings have been updated. You can continue with your Query!",
# elements=[
# cl.Text(
# name="settings",
# display="side",
# content=json.dumps(settings_dict, indent=4),
# language="json",
# ),
# ],
).send()
async def set_starters(self):
"""
Set starter messages for the chatbot.
"""
return [
cl.Starter(
label="recording on CNNs?",
message="Where can I find the recording for the lecture on Transformers?",
icon="/public/adv-screen-recorder-svgrepo-com.svg",
),
cl.Starter(
label="where's the slides?",
message="When are the lectures? I can't find the schedule.",
icon="/public/alarmy-svgrepo-com.svg",
),
cl.Starter(
label="Due Date?",
message="When is the final project due?",
icon="/public/calendar-samsung-17-svgrepo-com.svg",
),
cl.Starter(
label="Explain backprop.",
message="I didn't understand the math behind backprop, could you explain it?",
icon="/public/acastusphoton-svgrepo-com.svg",
),
]
def rename(self, orig_author: str):
"""
Rename the original author to a more user-friendly name.
Args:
orig_author (str): The original author's name.
Returns:
str: The renamed author.
"""
rename_dict = {"Chatbot": LLM}
return rename_dict.get(orig_author, orig_author)
async def start(self):
"""
Start the chatbot, initialize settings widgets,
and display and load previous conversation if chat logging is enabled.
"""
start_time = time.time()
await self.make_llm_settings_widgets(self.config) # Reload the settings widgets
# TODO: remove self.user with cl.user_session.get("user")
self.user = {
"user_id": "guest",
"session_id": cl.context.session.thread_id,
}
memory = cl.user_session.get("memory", [])
self.llm_tutor = LLMTutor(self.config, user=self.user)
self.chain = self.llm_tutor.qa_bot(
memory=memory,
)
self.question_generator = self.llm_tutor.question_generator
cl.user_session.set("llm_tutor", self.llm_tutor)
cl.user_session.set("chain", self.chain)
print("Time taken to start LLM: ", time.time() - start_time)
async def stream_response(self, response):
"""
Stream the response from the LLM.
Args:
response: The response from the LLM.
"""
msg = cl.Message(content="")
await msg.send()
output = {}
for chunk in response:
if "answer" in chunk:
await msg.stream_token(chunk["answer"])
for key in chunk:
if key not in output:
output[key] = chunk[key]
else:
output[key] += chunk[key]
return output
async def main(self, message):
"""
Process and Display the Conversation.
Args:
message: The incoming chat message.
"""
start_time = time.time()
chain = cl.user_session.get("chain")
token_count = 0 # initialize token count
if not chain:
await self.start() # start the chatbot if the chain is not present
chain = cl.user_session.get("chain")
# update user info with last message time
llm_settings = cl.user_session.get("llm_settings", {})
view_sources = llm_settings.get("view_sources", False)
stream = llm_settings.get("stream_response", False)
stream = False # Fix streaming
user_query_dict = {"input": message.content}
# Define the base configuration
cb = cl.AsyncLangchainCallbackHandler()
chain_config = {
"configurable": {
"user_id": self.user["user_id"],
"conversation_id": self.user["session_id"],
"memory_window": self.config["llm_params"]["memory_window"],
},
"callbacks": (
[cb]
if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
else None
),
}
with get_openai_callback() as token_count_cb:
if stream:
res = chain.stream(user_query=user_query_dict, config=chain_config)
res = await self.stream_response(res)
else:
res = await chain.invoke(
user_query=user_query_dict,
config=chain_config,
)
token_count += token_count_cb.total_tokens
answer = res.get("answer", res.get("result"))
answer_with_sources, source_elements, sources_dict = get_sources(
res, answer, stream=stream, view_sources=view_sources
)
answer_with_sources = answer_with_sources.replace("$$", "$")
print("Time taken to process the message: ", time.time() - start_time)
actions = []
if self.config["llm_params"]["generate_follow_up"]:
start_time = time.time()
cb_follow_up = cl.AsyncLangchainCallbackHandler()
config = {
"callbacks": (
[cb_follow_up]
if cl_data._data_layer and self.config["chat_logging"]["callbacks"]
else None
)
}
with get_openai_callback() as token_count_cb:
list_of_questions = await self.question_generator.generate_questions(
query=user_query_dict["input"],
response=answer,
chat_history=res.get("chat_history"),
context=res.get("context"),
config=config,
)
token_count += token_count_cb.total_tokens
for question in list_of_questions:
actions.append(
cl.Action(
name="follow up question",
value="example_value",
description=question,
label=question,
)
)
print("Time taken to generate questions: ", time.time() - start_time)
print("Total Tokens Used: ", token_count)
await cl.Message(
content=answer_with_sources,
elements=source_elements,
author=LLM,
actions=actions,
).send()
async def on_follow_up(self, action: cl.Action):
user = cl.user_session.get("user")
message = await cl.Message(
content=action.description,
type="user_message",
author=user.identifier,
).send()
async with cl.Step(
name="on_follow_up", type="run", parent_id=message.id
) as step:
await self.main(message)
step.output = message.content
chatbot = Chatbot(config=config)
async def start_app():
cl.set_starters(chatbot.set_starters)
cl.author_rename(chatbot.rename)
cl.on_chat_start(chatbot.start)
cl.on_message(chatbot.main)
cl.on_settings_update(chatbot.update_llm)
cl.action_callback("follow up question")(chatbot.on_follow_up)
loop = asyncio.get_event_loop()
if loop.is_running():
asyncio.ensure_future(start_app())
else:
asyncio.run(start_app())