doevent commited on
Commit
a592138
·
1 Parent(s): fddf1d0

Upload models/transformer2d.py

Browse files
Files changed (1) hide show
  1. models/transformer2d.py +229 -0
models/transformer2d.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+ import copy, math
5
+ from models.position_encoding import build_position_encoding
6
+
7
+
8
+ class TransformerEncoder(nn.Module):
9
+
10
+ def __init__(self, enc_layer, num_layers, use_dense_pos=False):
11
+ super().__init__()
12
+ self.layers = nn.ModuleList([copy.deepcopy(enc_layer) for i in range(num_layers)])
13
+ self.num_layers = num_layers
14
+ self.use_dense_pos = use_dense_pos
15
+
16
+ def forward(self, src, pos, padding_mask=None):
17
+ if self.use_dense_pos:
18
+ ## pos encoding at each MH-Attention block (q,k)
19
+ output, pos_enc = src, pos
20
+ for layer in self.layers:
21
+ output, att_map = layer(output, pos_enc, padding_mask)
22
+ else:
23
+ ## pos encoding at input only (q,k,v)
24
+ output, pos_enc = src + pos, None
25
+ for layer in self.layers:
26
+ output, att_map = layer(output, pos_enc, padding_mask)
27
+ return output, att_map
28
+
29
+
30
+ class EncoderLayer(nn.Module):
31
+
32
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
33
+ use_dense_pos=False):
34
+ super().__init__()
35
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
36
+ # Implementation of Feedforward model
37
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
38
+ self.dropout = nn.Dropout(dropout)
39
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
40
+
41
+ self.norm1 = nn.LayerNorm(d_model)
42
+ self.norm2 = nn.LayerNorm(d_model)
43
+ self.dropout1 = nn.Dropout(dropout)
44
+ self.dropout2 = nn.Dropout(dropout)
45
+
46
+ self.activation = _get_activation_fn(activation)
47
+
48
+ def with_pos_embed(self, tensor, pos):
49
+ return tensor if pos is None else tensor + pos
50
+
51
+ def forward(self, src, pos, padding_mask):
52
+ q = k = self.with_pos_embed(src, pos)
53
+ src2, attn = self.self_attn(q, k, value=src, key_padding_mask=padding_mask)
54
+ src = src + self.dropout1(src2)
55
+ src = self.norm1(src)
56
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
57
+ src = src + self.dropout2(src2)
58
+ src = self.norm2(src)
59
+ return src, attn
60
+
61
+
62
+ class TransformerDecoder(nn.Module):
63
+
64
+ def __init__(self, dec_layer, num_layers, use_dense_pos=False, return_intermediate=False):
65
+ super().__init__()
66
+ self.layers = nn.ModuleList([copy.deepcopy(dec_layer) for i in range(num_layers)])
67
+ self.num_layers = num_layers
68
+ self.use_dense_pos = use_dense_pos
69
+ self.return_intermediate = return_intermediate
70
+
71
+ def forward(self, tgt, tgt_pos, memory, memory_pos,
72
+ tgt_padding_mask, src_padding_mask, tgt_attn_mask=None):
73
+ intermediate = []
74
+ if self.use_dense_pos:
75
+ ## pos encoding at each MH-Attention block (q,k)
76
+ output = tgt
77
+ tgt_pos_enc, memory_pos_enc = tgt_pos, memory_pos
78
+ for layer in self.layers:
79
+ output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
80
+ tgt_padding_mask, src_padding_mask, tgt_attn_mask)
81
+ if self.return_intermediate:
82
+ intermediate.append(output)
83
+ else:
84
+ ## pos encoding at input only (q,k,v)
85
+ output = tgt + tgt_pos
86
+ tgt_pos_enc, memory_pos_enc = None, None
87
+ for layer in self.layers:
88
+ output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
89
+ tgt_padding_mask, src_padding_mask, tgt_attn_mask)
90
+ if self.return_intermediate:
91
+ intermediate.append(output)
92
+
93
+ if self.return_intermediate:
94
+ return torch.stack(intermediate)
95
+ return output, att_map
96
+
97
+
98
+ class DecoderLayer(nn.Module):
99
+
100
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
101
+ use_dense_pos=False):
102
+ super().__init__()
103
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
104
+ self.corr_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
105
+ # Implementation of Feedforward model
106
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
107
+ self.dropout = nn.Dropout(dropout)
108
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
109
+
110
+ self.norm1 = nn.LayerNorm(d_model)
111
+ self.norm2 = nn.LayerNorm(d_model)
112
+ self.norm3 = nn.LayerNorm(d_model)
113
+ self.dropout1 = nn.Dropout(dropout)
114
+ self.dropout2 = nn.Dropout(dropout)
115
+ self.dropout3 = nn.Dropout(dropout)
116
+
117
+ self.activation = _get_activation_fn(activation)
118
+
119
+ def with_pos_embed(self, tensor, pos):
120
+ return tensor if pos is None else tensor + pos
121
+
122
+ def forward(self, tgt, tgt_pos, memory, memory_pos,
123
+ tgt_padding_mask, memory_padding_mask, tgt_attn_mask):
124
+ q = k = self.with_pos_embed(tgt, tgt_pos)
125
+ tgt2, attn = self.self_attn(q, k, value=tgt, key_padding_mask=tgt_padding_mask,
126
+ attn_mask=tgt_attn_mask)
127
+ tgt = tgt + self.dropout1(tgt2)
128
+ tgt = self.norm1(tgt)
129
+ tgt2, attn = self.corr_attn(query=self.with_pos_embed(tgt, tgt_pos),
130
+ key=self.with_pos_embed(memory, memory_pos),
131
+ value=memory, key_padding_mask=memory_padding_mask)
132
+ tgt = tgt + self.dropout2(tgt2)
133
+ tgt = self.norm2(tgt)
134
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
135
+ tgt = tgt + self.dropout3(tgt2)
136
+ tgt = self.norm3(tgt)
137
+ return tgt, attn
138
+
139
+
140
+ def _get_activation_fn(activation):
141
+ """Return an activation function given a string"""
142
+ if activation == "relu":
143
+ return F.relu
144
+ if activation == "gelu":
145
+ return F.gelu
146
+ if activation == "glu":
147
+ return F.glu
148
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
149
+
150
+
151
+
152
+ #-----------------------------------------------------------------------------------
153
+ '''
154
+ copy from the implementatoin of "attention-is-all-you-need-pytorch-master" by Yu-Hsiang Huang
155
+ '''
156
+
157
+ class MultiHeadAttention(nn.Module):
158
+ ''' Multi-Head Attention module '''
159
+
160
+ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
161
+ super().__init__()
162
+
163
+ self.n_head = n_head
164
+ self.d_k = d_k
165
+ self.d_v = d_v
166
+
167
+ self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
168
+ self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
169
+ self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
170
+ self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
171
+
172
+ self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
173
+
174
+ self.dropout = nn.Dropout(dropout)
175
+ self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
176
+
177
+
178
+ def forward(self, q, k, v, mask=None):
179
+
180
+ d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
181
+ sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
182
+
183
+ residual = q
184
+
185
+ # Pass through the pre-attention projection: b x lq x (n*dv)
186
+ # Separate different heads: b x lq x n x dv
187
+ q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
188
+ k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
189
+ v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
190
+
191
+ # Transpose for attention dot product: b x n x lq x dv
192
+ q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
193
+
194
+ if mask is not None:
195
+ mask = mask.unsqueeze(1) # For head axis broadcasting.
196
+
197
+ q, attn = self.attention(q, k, v, mask=mask)
198
+
199
+ # Transpose to move the head dimension back: b x lq x n x dv
200
+ # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
201
+ q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
202
+ q = self.dropout(self.fc(q))
203
+ q += residual
204
+
205
+ q = self.layer_norm(q)
206
+
207
+ return q, attn
208
+
209
+
210
+
211
+ class ScaledDotProductAttention(nn.Module):
212
+ ''' Scaled Dot-Product Attention '''
213
+
214
+ def __init__(self, temperature, attn_dropout=0.1):
215
+ super().__init__()
216
+ self.temperature = temperature
217
+ self.dropout = nn.Dropout(attn_dropout)
218
+
219
+ def forward(self, q, k, v, mask=None):
220
+
221
+ attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
222
+
223
+ if mask is not None:
224
+ attn = attn.masked_fill(mask == 0, -1e9)
225
+
226
+ attn = self.dropout(F.softmax(attn, dim=-1))
227
+ output = torch.matmul(attn, v)
228
+
229
+ return output, attn