Spaces:
Running
Running
Upload models/transformer2d.py
Browse files- models/transformer2d.py +229 -0
models/transformer2d.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
import copy, math
|
5 |
+
from models.position_encoding import build_position_encoding
|
6 |
+
|
7 |
+
|
8 |
+
class TransformerEncoder(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, enc_layer, num_layers, use_dense_pos=False):
|
11 |
+
super().__init__()
|
12 |
+
self.layers = nn.ModuleList([copy.deepcopy(enc_layer) for i in range(num_layers)])
|
13 |
+
self.num_layers = num_layers
|
14 |
+
self.use_dense_pos = use_dense_pos
|
15 |
+
|
16 |
+
def forward(self, src, pos, padding_mask=None):
|
17 |
+
if self.use_dense_pos:
|
18 |
+
## pos encoding at each MH-Attention block (q,k)
|
19 |
+
output, pos_enc = src, pos
|
20 |
+
for layer in self.layers:
|
21 |
+
output, att_map = layer(output, pos_enc, padding_mask)
|
22 |
+
else:
|
23 |
+
## pos encoding at input only (q,k,v)
|
24 |
+
output, pos_enc = src + pos, None
|
25 |
+
for layer in self.layers:
|
26 |
+
output, att_map = layer(output, pos_enc, padding_mask)
|
27 |
+
return output, att_map
|
28 |
+
|
29 |
+
|
30 |
+
class EncoderLayer(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
|
33 |
+
use_dense_pos=False):
|
34 |
+
super().__init__()
|
35 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
36 |
+
# Implementation of Feedforward model
|
37 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
38 |
+
self.dropout = nn.Dropout(dropout)
|
39 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
40 |
+
|
41 |
+
self.norm1 = nn.LayerNorm(d_model)
|
42 |
+
self.norm2 = nn.LayerNorm(d_model)
|
43 |
+
self.dropout1 = nn.Dropout(dropout)
|
44 |
+
self.dropout2 = nn.Dropout(dropout)
|
45 |
+
|
46 |
+
self.activation = _get_activation_fn(activation)
|
47 |
+
|
48 |
+
def with_pos_embed(self, tensor, pos):
|
49 |
+
return tensor if pos is None else tensor + pos
|
50 |
+
|
51 |
+
def forward(self, src, pos, padding_mask):
|
52 |
+
q = k = self.with_pos_embed(src, pos)
|
53 |
+
src2, attn = self.self_attn(q, k, value=src, key_padding_mask=padding_mask)
|
54 |
+
src = src + self.dropout1(src2)
|
55 |
+
src = self.norm1(src)
|
56 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
57 |
+
src = src + self.dropout2(src2)
|
58 |
+
src = self.norm2(src)
|
59 |
+
return src, attn
|
60 |
+
|
61 |
+
|
62 |
+
class TransformerDecoder(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, dec_layer, num_layers, use_dense_pos=False, return_intermediate=False):
|
65 |
+
super().__init__()
|
66 |
+
self.layers = nn.ModuleList([copy.deepcopy(dec_layer) for i in range(num_layers)])
|
67 |
+
self.num_layers = num_layers
|
68 |
+
self.use_dense_pos = use_dense_pos
|
69 |
+
self.return_intermediate = return_intermediate
|
70 |
+
|
71 |
+
def forward(self, tgt, tgt_pos, memory, memory_pos,
|
72 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask=None):
|
73 |
+
intermediate = []
|
74 |
+
if self.use_dense_pos:
|
75 |
+
## pos encoding at each MH-Attention block (q,k)
|
76 |
+
output = tgt
|
77 |
+
tgt_pos_enc, memory_pos_enc = tgt_pos, memory_pos
|
78 |
+
for layer in self.layers:
|
79 |
+
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
|
80 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
|
81 |
+
if self.return_intermediate:
|
82 |
+
intermediate.append(output)
|
83 |
+
else:
|
84 |
+
## pos encoding at input only (q,k,v)
|
85 |
+
output = tgt + tgt_pos
|
86 |
+
tgt_pos_enc, memory_pos_enc = None, None
|
87 |
+
for layer in self.layers:
|
88 |
+
output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc,
|
89 |
+
tgt_padding_mask, src_padding_mask, tgt_attn_mask)
|
90 |
+
if self.return_intermediate:
|
91 |
+
intermediate.append(output)
|
92 |
+
|
93 |
+
if self.return_intermediate:
|
94 |
+
return torch.stack(intermediate)
|
95 |
+
return output, att_map
|
96 |
+
|
97 |
+
|
98 |
+
class DecoderLayer(nn.Module):
|
99 |
+
|
100 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
|
101 |
+
use_dense_pos=False):
|
102 |
+
super().__init__()
|
103 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
104 |
+
self.corr_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
105 |
+
# Implementation of Feedforward model
|
106 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
107 |
+
self.dropout = nn.Dropout(dropout)
|
108 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
109 |
+
|
110 |
+
self.norm1 = nn.LayerNorm(d_model)
|
111 |
+
self.norm2 = nn.LayerNorm(d_model)
|
112 |
+
self.norm3 = nn.LayerNorm(d_model)
|
113 |
+
self.dropout1 = nn.Dropout(dropout)
|
114 |
+
self.dropout2 = nn.Dropout(dropout)
|
115 |
+
self.dropout3 = nn.Dropout(dropout)
|
116 |
+
|
117 |
+
self.activation = _get_activation_fn(activation)
|
118 |
+
|
119 |
+
def with_pos_embed(self, tensor, pos):
|
120 |
+
return tensor if pos is None else tensor + pos
|
121 |
+
|
122 |
+
def forward(self, tgt, tgt_pos, memory, memory_pos,
|
123 |
+
tgt_padding_mask, memory_padding_mask, tgt_attn_mask):
|
124 |
+
q = k = self.with_pos_embed(tgt, tgt_pos)
|
125 |
+
tgt2, attn = self.self_attn(q, k, value=tgt, key_padding_mask=tgt_padding_mask,
|
126 |
+
attn_mask=tgt_attn_mask)
|
127 |
+
tgt = tgt + self.dropout1(tgt2)
|
128 |
+
tgt = self.norm1(tgt)
|
129 |
+
tgt2, attn = self.corr_attn(query=self.with_pos_embed(tgt, tgt_pos),
|
130 |
+
key=self.with_pos_embed(memory, memory_pos),
|
131 |
+
value=memory, key_padding_mask=memory_padding_mask)
|
132 |
+
tgt = tgt + self.dropout2(tgt2)
|
133 |
+
tgt = self.norm2(tgt)
|
134 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
135 |
+
tgt = tgt + self.dropout3(tgt2)
|
136 |
+
tgt = self.norm3(tgt)
|
137 |
+
return tgt, attn
|
138 |
+
|
139 |
+
|
140 |
+
def _get_activation_fn(activation):
|
141 |
+
"""Return an activation function given a string"""
|
142 |
+
if activation == "relu":
|
143 |
+
return F.relu
|
144 |
+
if activation == "gelu":
|
145 |
+
return F.gelu
|
146 |
+
if activation == "glu":
|
147 |
+
return F.glu
|
148 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
#-----------------------------------------------------------------------------------
|
153 |
+
'''
|
154 |
+
copy from the implementatoin of "attention-is-all-you-need-pytorch-master" by Yu-Hsiang Huang
|
155 |
+
'''
|
156 |
+
|
157 |
+
class MultiHeadAttention(nn.Module):
|
158 |
+
''' Multi-Head Attention module '''
|
159 |
+
|
160 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
161 |
+
super().__init__()
|
162 |
+
|
163 |
+
self.n_head = n_head
|
164 |
+
self.d_k = d_k
|
165 |
+
self.d_v = d_v
|
166 |
+
|
167 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
168 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
169 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
170 |
+
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
171 |
+
|
172 |
+
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
173 |
+
|
174 |
+
self.dropout = nn.Dropout(dropout)
|
175 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, q, k, v, mask=None):
|
179 |
+
|
180 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
181 |
+
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
182 |
+
|
183 |
+
residual = q
|
184 |
+
|
185 |
+
# Pass through the pre-attention projection: b x lq x (n*dv)
|
186 |
+
# Separate different heads: b x lq x n x dv
|
187 |
+
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
188 |
+
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
189 |
+
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
190 |
+
|
191 |
+
# Transpose for attention dot product: b x n x lq x dv
|
192 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
193 |
+
|
194 |
+
if mask is not None:
|
195 |
+
mask = mask.unsqueeze(1) # For head axis broadcasting.
|
196 |
+
|
197 |
+
q, attn = self.attention(q, k, v, mask=mask)
|
198 |
+
|
199 |
+
# Transpose to move the head dimension back: b x lq x n x dv
|
200 |
+
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
|
201 |
+
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
202 |
+
q = self.dropout(self.fc(q))
|
203 |
+
q += residual
|
204 |
+
|
205 |
+
q = self.layer_norm(q)
|
206 |
+
|
207 |
+
return q, attn
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
class ScaledDotProductAttention(nn.Module):
|
212 |
+
''' Scaled Dot-Product Attention '''
|
213 |
+
|
214 |
+
def __init__(self, temperature, attn_dropout=0.1):
|
215 |
+
super().__init__()
|
216 |
+
self.temperature = temperature
|
217 |
+
self.dropout = nn.Dropout(attn_dropout)
|
218 |
+
|
219 |
+
def forward(self, q, k, v, mask=None):
|
220 |
+
|
221 |
+
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
222 |
+
|
223 |
+
if mask is not None:
|
224 |
+
attn = attn.masked_fill(mask == 0, -1e9)
|
225 |
+
|
226 |
+
attn = self.dropout(F.softmax(attn, dim=-1))
|
227 |
+
output = torch.matmul(attn, v)
|
228 |
+
|
229 |
+
return output, attn
|