doevent commited on
Commit
fddf1d0
·
1 Parent(s): 84b4706

Upload models/position_encoding.py

Browse files
Files changed (1) hide show
  1. models/position_encoding.py +86 -0
models/position_encoding.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ """
3
+ Various positional encodings for the transformer.
4
+ """
5
+ import math
6
+ import torch
7
+ from torch import nn
8
+
9
+
10
+ class PositionEmbeddingSine(nn.Module):
11
+ """
12
+ This is a more standard version of the position embedding, very similar to the one
13
+ used by the Attention is all you need paper, generalized to work on images.
14
+ """
15
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
16
+ super().__init__()
17
+ self.num_pos_feats = num_pos_feats
18
+ self.temperature = temperature
19
+ self.normalize = normalize
20
+ if scale is not None and normalize is False:
21
+ raise ValueError("normalize should be True if scale is passed")
22
+ if scale is None:
23
+ scale = 2 * math.pi
24
+ self.scale = scale
25
+
26
+ def forward(self, token_tensors):
27
+ ## input: (B,C,H,W)
28
+ x = token_tensors
29
+ h, w = x.shape[-2:]
30
+ identity_map= torch.ones((h,w), device=x.device)
31
+ y_embed = identity_map.cumsum(0, dtype=torch.float32)
32
+ x_embed = identity_map.cumsum(1, dtype=torch.float32)
33
+ if self.normalize:
34
+ eps = 1e-6
35
+ y_embed = y_embed / (y_embed[-1:, :] + eps) * self.scale
36
+ x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale
37
+
38
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
39
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
40
+
41
+ pos_x = x_embed[:, :, None] / dim_t
42
+ pos_y = y_embed[:, :, None] / dim_t
43
+ pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
44
+ pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
45
+ pos = torch.cat((pos_y, pos_x), dim=2).permute(2, 0, 1)
46
+ batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
47
+ return batch_pos
48
+
49
+
50
+ class PositionEmbeddingLearned(nn.Module):
51
+ """
52
+ Absolute pos embedding, learned.
53
+ """
54
+ def __init__(self, n_pos_x=16, n_pos_y=16, num_pos_feats=64):
55
+ super().__init__()
56
+ self.row_embed = nn.Embedding(n_pos_y, num_pos_feats)
57
+ self.col_embed = nn.Embedding(n_pos_x, num_pos_feats)
58
+ self.reset_parameters()
59
+
60
+ def reset_parameters(self):
61
+ nn.init.uniform_(self.row_embed.weight)
62
+ nn.init.uniform_(self.col_embed.weight)
63
+
64
+ def forward(self, token_tensors):
65
+ ## input: (B,C,H,W)
66
+ x = token_tensors
67
+ h, w = x.shape[-2:]
68
+ i = torch.arange(w, device=x.device)
69
+ j = torch.arange(h, device=x.device)
70
+ x_emb = self.col_embed(i)
71
+ y_emb = self.row_embed(j)
72
+ pos = torch.cat([
73
+ x_emb.unsqueeze(0).repeat(h, 1, 1),
74
+ y_emb.unsqueeze(1).repeat(1, w, 1),
75
+ ], dim=-1).permute(2, 0, 1)
76
+ batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
77
+ return batch_pos
78
+
79
+
80
+ def build_position_encoding(num_pos_feats=64, n_pos_x=16, n_pos_y=16, is_learned=False):
81
+ if is_learned:
82
+ position_embedding = PositionEmbeddingLearned(n_pos_x, n_pos_y, num_pos_feats)
83
+ else:
84
+ position_embedding = PositionEmbeddingSine(num_pos_feats, normalize=True)
85
+
86
+ return position_embedding