doevent commited on
Commit
c13cc41
·
1 Parent(s): 35fa4b8

Upload utils/dataset_lab.py

Browse files
Files changed (1) hide show
  1. utils/dataset_lab.py +37 -0
utils/dataset_lab.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function, division
2
+ import torch, os, glob
3
+ from torch.utils.data import Dataset, DataLoader
4
+ import numpy as np
5
+ from PIL import Image
6
+ import cv2
7
+
8
+
9
+ class LabDataset(Dataset):
10
+
11
+ def __init__(self, rootdir=None, filelist=None, resize=None):
12
+
13
+ if filelist:
14
+ self.file_list = filelist
15
+ else:
16
+ assert os.path.exists(rootdir), "@dir:'%s' NOT exist ..."%rootdir
17
+ self.file_list = glob.glob(os.path.join(rootdir, '*.*'))
18
+ self.file_list.sort()
19
+ self.resize = resize
20
+
21
+ def __len__(self):
22
+ return len(self.file_list)
23
+
24
+ def __getitem__(self, idx):
25
+ bgr_img = cv2.imread(self.file_list[idx], cv2.IMREAD_COLOR)
26
+ if self.resize:
27
+ bgr_img = cv2.resize(bgr_img, (self.resize,self.resize), interpolation=cv2.INTER_CUBIC)
28
+ bgr_img = np.array(bgr_img / 255., np.float32)
29
+ lab_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2LAB)
30
+ #print('--------L:', np.min(lab_img[:,:,0]), np.max(lab_img[:,:,0]))
31
+ #print('--------ab:', np.min(lab_img[:,:,1:3]), np.max(lab_img[:,:,1:3]))
32
+ lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
33
+ bgr_img = torch.from_numpy(bgr_img.transpose((2, 0, 1)))
34
+ gray_img = (lab_img[0:1,:,:]-50.) / 50.
35
+ color_map = lab_img[1:3,:,:] / 110.
36
+ bgr_img = bgr_img*2. - 1.
37
+ return {'gray': gray_img, 'color': color_map, 'BGR': bgr_img}