Spaces:
Runtime error
Runtime error
import PIL.Image | |
import cv2 | |
import torch | |
from diffusers import ControlNetModel | |
from loguru import logger | |
from iopaint.schema import InpaintRequest, ModelType | |
from .base import DiffusionInpaintModel | |
from .helper.controlnet_preprocess import ( | |
make_canny_control_image, | |
make_openpose_control_image, | |
make_depth_control_image, | |
make_inpaint_control_image, | |
) | |
from .helper.cpu_text_encoder import CPUTextEncoderWrapper | |
from .original_sd_configs import get_config_files | |
from .utils import ( | |
get_scheduler, | |
handle_from_pretrained_exceptions, | |
get_torch_dtype, | |
enable_low_mem, | |
is_local_files_only, | |
) | |
class ControlNet(DiffusionInpaintModel): | |
name = "controlnet" | |
pad_mod = 8 | |
min_size = 512 | |
def lcm_lora_id(self): | |
if self.model_info.model_type in [ | |
ModelType.DIFFUSERS_SD, | |
ModelType.DIFFUSERS_SD_INPAINT, | |
]: | |
return "latent-consistency/lcm-lora-sdv1-5" | |
if self.model_info.model_type in [ | |
ModelType.DIFFUSERS_SDXL, | |
ModelType.DIFFUSERS_SDXL_INPAINT, | |
]: | |
return "latent-consistency/lcm-lora-sdxl" | |
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}") | |
def init_model(self, device: torch.device, **kwargs): | |
model_info = kwargs["model_info"] | |
controlnet_method = kwargs["controlnet_method"] | |
self.model_info = model_info | |
self.controlnet_method = controlnet_method | |
model_kwargs = { | |
**kwargs.get("pipe_components", {}), | |
"local_files_only": is_local_files_only(**kwargs), | |
} | |
self.local_files_only = model_kwargs["local_files_only"] | |
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get( | |
"cpu_offload", False | |
) | |
if disable_nsfw_checker: | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update( | |
dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
) | |
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) | |
self.torch_dtype = torch_dtype | |
if model_info.model_type in [ | |
ModelType.DIFFUSERS_SD, | |
ModelType.DIFFUSERS_SD_INPAINT, | |
]: | |
from diffusers import ( | |
StableDiffusionControlNetInpaintPipeline as PipeClass, | |
) | |
elif model_info.model_type in [ | |
ModelType.DIFFUSERS_SDXL, | |
ModelType.DIFFUSERS_SDXL_INPAINT, | |
]: | |
from diffusers import ( | |
StableDiffusionXLControlNetInpaintPipeline as PipeClass, | |
) | |
controlnet = ControlNetModel.from_pretrained( | |
pretrained_model_name_or_path=controlnet_method, | |
resume_download=True, | |
local_files_only=model_kwargs["local_files_only"], | |
torch_dtype=self.torch_dtype, | |
) | |
if model_info.is_single_file_diffusers: | |
if self.model_info.model_type == ModelType.DIFFUSERS_SD: | |
model_kwargs["num_in_channels"] = 4 | |
else: | |
model_kwargs["num_in_channels"] = 9 | |
self.model = PipeClass.from_single_file( | |
model_info.path, | |
controlnet=controlnet, | |
load_safety_checker=not disable_nsfw_checker, | |
torch_dtype=torch_dtype, | |
config_files=get_config_files(), | |
**model_kwargs, | |
) | |
else: | |
self.model = handle_from_pretrained_exceptions( | |
PipeClass.from_pretrained, | |
pretrained_model_name_or_path=model_info.path, | |
controlnet=controlnet, | |
variant="fp16", | |
torch_dtype=torch_dtype, | |
**model_kwargs, | |
) | |
enable_low_mem(self.model, kwargs.get("low_mem", False)) | |
if kwargs.get("cpu_offload", False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
if kwargs["sd_cpu_textencoder"]: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = CPUTextEncoderWrapper( | |
self.model.text_encoder, torch_dtype | |
) | |
self.callback = kwargs.pop("callback", None) | |
def switch_controlnet_method(self, new_method: str): | |
self.controlnet_method = new_method | |
controlnet = ControlNetModel.from_pretrained( | |
new_method, | |
resume_download=True, | |
local_files_only=self.local_files_only, | |
torch_dtype=self.torch_dtype, | |
).to(self.model.device) | |
self.model.controlnet = controlnet | |
def _get_control_image(self, image, mask): | |
if "canny" in self.controlnet_method: | |
control_image = make_canny_control_image(image) | |
elif "openpose" in self.controlnet_method: | |
control_image = make_openpose_control_image(image) | |
elif "depth" in self.controlnet_method: | |
control_image = make_depth_control_image(image) | |
elif "inpaint" in self.controlnet_method: | |
control_image = make_inpaint_control_image(image, mask) | |
else: | |
raise NotImplementedError(f"{self.controlnet_method} not implemented") | |
return control_image | |
def forward(self, image, mask, config: InpaintRequest): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
scheduler_config = self.model.scheduler.config | |
scheduler = get_scheduler(config.sd_sampler, scheduler_config) | |
self.model.scheduler = scheduler | |
img_h, img_w = image.shape[:2] | |
control_image = self._get_control_image(image, mask) | |
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") | |
image = PIL.Image.fromarray(image) | |
output = self.model( | |
image=image, | |
mask_image=mask_image, | |
control_image=control_image, | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
num_inference_steps=config.sd_steps, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np", | |
callback_on_step_end=self.callback, | |
height=img_h, | |
width=img_w, | |
generator=torch.manual_seed(config.sd_seed), | |
controlnet_conditioning_scale=config.controlnet_conditioning_scale, | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |