Update Dog_Training.py
Browse files- Dog_Training.py +5 -5
Dog_Training.py
CHANGED
@@ -25,7 +25,7 @@ def load_images_from_folder(folder, img_size=(128, 128)):
|
|
25 |
return np.array(images), np.array(labels)
|
26 |
|
27 |
|
28 |
-
#
|
29 |
train_images, train_labels = load_images_from_folder('DataDogs')
|
30 |
test_images, test_labels = load_images_from_folder('DataDogs')
|
31 |
|
@@ -34,7 +34,7 @@ label_encoder = LabelEncoder()
|
|
34 |
train_labels_encoded = label_encoder.fit_transform(train_labels)
|
35 |
test_labels_encoded = label_encoder.transform(test_labels)
|
36 |
|
37 |
-
#
|
38 |
model = Sequential([
|
39 |
Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
|
40 |
MaxPooling2D((2, 2)),
|
@@ -48,13 +48,13 @@ model = Sequential([
|
|
48 |
Dense(len(label_encoder.classes_), activation='softmax')
|
49 |
])
|
50 |
|
51 |
-
#
|
52 |
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
53 |
|
54 |
-
#
|
55 |
model.fit(train_images, train_labels_encoded, epochs=10, validation_data=(test_images, test_labels_encoded))
|
56 |
|
57 |
-
#
|
58 |
model.save('dog_breed_classifier.h5')
|
59 |
|
60 |
with open('label_encoder.pkl', 'wb') as f:
|
|
|
25 |
return np.array(images), np.array(labels)
|
26 |
|
27 |
|
28 |
+
# training/test split
|
29 |
train_images, train_labels = load_images_from_folder('DataDogs')
|
30 |
test_images, test_labels = load_images_from_folder('DataDogs')
|
31 |
|
|
|
34 |
train_labels_encoded = label_encoder.fit_transform(train_labels)
|
35 |
test_labels_encoded = label_encoder.transform(test_labels)
|
36 |
|
37 |
+
# Modell definieren
|
38 |
model = Sequential([
|
39 |
Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
|
40 |
MaxPooling2D((2, 2)),
|
|
|
48 |
Dense(len(label_encoder.classes_), activation='softmax')
|
49 |
])
|
50 |
|
51 |
+
# Modell Kompilieren
|
52 |
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
53 |
|
54 |
+
# das Modell Trainieren
|
55 |
model.fit(train_images, train_labels_encoded, epochs=10, validation_data=(test_images, test_labels_encoded))
|
56 |
|
57 |
+
# das trainierte Modell und den LabelEncoder Speichern
|
58 |
model.save('dog_breed_classifier.h5')
|
59 |
|
60 |
with open('label_encoder.pkl', 'wb') as f:
|