|
import torch.nn as nn
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn(inp, oup, stride, use_batch_norm=True, onnx_compatible=False):
|
|
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
|
|
|
if use_batch_norm:
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
ReLU(inplace=True)
|
|
)
|
|
else:
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
ReLU(inplace=True)
|
|
)
|
|
|
|
|
|
def conv_1x1_bn(inp, oup, use_batch_norm=True, onnx_compatible=False):
|
|
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
|
if use_batch_norm:
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
ReLU(inplace=True)
|
|
)
|
|
else:
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
ReLU(inplace=True)
|
|
)
|
|
|
|
|
|
class InvertedResidual(nn.Module):
|
|
def __init__(self, inp, oup, stride, expand_ratio, use_batch_norm=True, onnx_compatible=False):
|
|
super(InvertedResidual, self).__init__()
|
|
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
|
|
|
self.stride = stride
|
|
assert stride in [1, 2]
|
|
|
|
hidden_dim = round(inp * expand_ratio)
|
|
self.use_res_connect = self.stride == 1 and inp == oup
|
|
|
|
if expand_ratio == 1:
|
|
if use_batch_norm:
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
else:
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
)
|
|
else:
|
|
if use_batch_norm:
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
else:
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
ReLU(inplace=True),
|
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.use_res_connect:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
class MobileNetV2(nn.Module):
|
|
def __init__(self, n_class=1000, input_size=224, width_mult=1., dropout_ratio=0.2,
|
|
use_batch_norm=True, onnx_compatible=False):
|
|
super(MobileNetV2, self).__init__()
|
|
block = InvertedResidual
|
|
input_channel = 32
|
|
last_channel = 1280
|
|
interverted_residual_setting = [
|
|
|
|
[1, 16, 1, 1],
|
|
[6, 24, 2, 2],
|
|
[6, 32, 3, 2],
|
|
[6, 64, 4, 2],
|
|
[6, 96, 3, 1],
|
|
[6, 160, 3, 2],
|
|
[6, 320, 1, 1],
|
|
]
|
|
|
|
|
|
assert input_size % 32 == 0
|
|
input_channel = int(input_channel * width_mult)
|
|
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
|
|
self.features = [conv_bn(3, input_channel, 2, onnx_compatible=onnx_compatible)]
|
|
|
|
for t, c, n, s in interverted_residual_setting:
|
|
output_channel = int(c * width_mult)
|
|
for i in range(n):
|
|
if i == 0:
|
|
self.features.append(block(input_channel, output_channel, s,
|
|
expand_ratio=t, use_batch_norm=use_batch_norm,
|
|
onnx_compatible=onnx_compatible))
|
|
else:
|
|
self.features.append(block(input_channel, output_channel, 1,
|
|
expand_ratio=t, use_batch_norm=use_batch_norm,
|
|
onnx_compatible=onnx_compatible))
|
|
input_channel = output_channel
|
|
|
|
self.features.append(conv_1x1_bn(input_channel, self.last_channel,
|
|
use_batch_norm=use_batch_norm, onnx_compatible=onnx_compatible))
|
|
|
|
self.features = nn.Sequential(*self.features)
|
|
|
|
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(dropout_ratio),
|
|
nn.Linear(self.last_channel, n_class),
|
|
)
|
|
|
|
self._initialize_weights()
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = x.mean(3).mean(2)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
def _initialize_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.Linear):
|
|
n = m.weight.size(1)
|
|
m.weight.data.normal_(0, 0.01)
|
|
m.bias.data.zero_()
|
|
|