kMaX-DeepLab / kmax_deeplab /kmax_model.py
Qihang Yu
Add kMaX-DeepLab
a06fad0
raw
history blame
21.5 kB
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/kmax_deeplab.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py
# Modified by Qihang Yu
from typing import Tuple, List
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from torch.cuda.amp import autocast
@META_ARCH_REGISTRY.register()
class kMaXDeepLab(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
class_threshold_thing: float,
class_threshold_stuff: float,
overlap_threshold: float,
reorder_class_weight: float,
reorder_mask_weight: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
input_shape: List[int]
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.class_threshold_thing = class_threshold_thing
self.class_threshold_stuff = class_threshold_stuff
self.reorder_class_weight = reorder_class_weight
self.reorder_mask_weight = reorder_mask_weight
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
self.input_shape = input_shape
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# Loss parameters:
deep_supervision = cfg.MODEL.KMAX_DEEPLAB.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.KMAX_DEEPLAB.NO_OBJECT_WEIGHT
share_final_matching = cfg.MODEL.KMAX_DEEPLAB.SHARE_FINAL_MATCHING
# loss weights
class_weight = cfg.MODEL.KMAX_DEEPLAB.CLASS_WEIGHT
dice_weight = cfg.MODEL.KMAX_DEEPLAB.DICE_WEIGHT
mask_weight = cfg.MODEL.KMAX_DEEPLAB.MASK_WEIGHT
insdis_weight = cfg.MODEL.KMAX_DEEPLAB.INSDIS_WEIGHT
aux_semantic_weight = cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_WEIGHT
# building criterion
matcher = HungarianMatcher()
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight,
"loss_pixel_insdis": insdis_weight, "loss_aux_semantic": aux_semantic_weight}
if deep_supervision:
dec_layers = sum(cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.DEC_LAYERS)
aux_weight_dict = {}
for i in range(dec_layers):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ["labels", "masks"]
if insdis_weight > 0:
losses += ["pixels"]
if aux_semantic_weight > 0:
losses += ["aux_semantic"]
criterion = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
share_final_matching=share_final_matching,
pixel_insdis_temperature=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_TEMPERATURE,
pixel_insdis_sample_k=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_SAMPLE_K,
aux_semantic_temperature=cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_TEMPERATURE,
aux_semantic_sample_k=cfg.MODEL.KMAX_DEEPLAB.UX_SEMANTIC_SAMPLE_K
)
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"num_queries": cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OBJECT_MASK_THRESHOLD,
"class_threshold_thing": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_THING,
"class_threshold_stuff": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_STUFF,
"overlap_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OVERLAP_THRESHOLD,
"reorder_class_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_CLASS_WEIGHT,
"reorder_mask_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_MASK_WEIGHT,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.KMAX_DEEPLAB.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.KMAX_DEEPLAB.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON
or cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
"input_shape": cfg.INPUT.IMAGE_SIZE
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
if "is_real_pixels" in batched_inputs[0]:
is_real_pixels = [x["is_real_pixels"] for x in batched_inputs]
# Set all padded pixel values to 0.
images = [x * y.to(x) for x, y in zip(images, is_real_pixels)]
# We perform zero padding to ensure input shape equal to self.input_shape.
# The padding is done on the right and bottom sides.
for idx in range(len(images)):
cur_height, cur_width = images[idx].shape[-2:]
padding = (0, max(0, self.input_shape[1] - cur_width), 0, max(0, self.input_shape[0] - cur_height), 0, 0)
images[idx] = F.pad(images[idx], padding, value=0)
images = ImageList.from_tensors(images, -1)
if self.training:
# mask classification target
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
gt_semantic = [x["sem_seg_gt"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances, gt_semantic, images)
else:
targets = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features)
if self.training:
with autocast(enabled=False):
# bipartite matching-based loss
for output_key in ["pixel_feature", "pred_masks", "pred_logits", "aux_semantic_pred"]:
if output_key in outputs:
outputs[output_key] = outputs[output_key].float()
for i in range(len(outputs["aux_outputs"])):
for output_key in ["pixel_feature", "pred_masks", "pred_logits"]:
outputs["aux_outputs"][i][output_key] = outputs["aux_outputs"][i][output_key].float()
losses = self.criterion(outputs, targets)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
align_corners = (images.tensor.shape[-1] % 2 == 1)
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=align_corners,
)
del outputs
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
cur_image = input_per_image["image"].to(self.device)
processed_results.append({})
scale_factor = max(images.tensor.shape[-2:]) / max(height, width)
ori_height, ori_width = round(height * scale_factor), round(width * scale_factor)
mask_pred_result = mask_pred_result[:, :ori_height, :ori_width].expand(1, -1, -1, -1)
cur_image = cur_image[:, :ori_height, :ori_width].expand(1, -1, -1, -1)
mask_pred_result = F.interpolate(
mask_pred_result, size=(height, width), mode="bilinear", align_corners=align_corners
)[0]
cur_image = F.interpolate(
cur_image.float(), size=(height, width), mode="bilinear", align_corners=align_corners
)[0].to(torch.uint8)
if self.sem_seg_postprocess_before_inference:
mask_cls_result = mask_cls_result.to(mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
processed_results[-1]["original_image"] = cur_image
# instance segmentation inference
if self.instance_on:
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["instances"] = instance_r
return processed_results
def prepare_targets(self, targets, targets_semantic, images):
new_targets = []
for targets_per_image, semantic_gt_mask in zip(targets, targets_semantic):
gt_masks = targets_per_image.gt_masks
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": gt_masks,
"semantic_masks": semantic_gt_mask
}
)
return new_targets
def semantic_inference(self, mask_cls, mask_pred):
# For cls prob, we exluced the void class following
# https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = F.softmax(mask_pred, dim=0)
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
# mask_cls: N x C
# mask_pred: N x H x W
# some hyper-params
num_mask_slots = mask_pred.shape[0]
cls_threshold_thing = self.class_threshold_thing
cls_threshold_stuff = self.class_threshold_stuff
object_mask_threshold = self.object_mask_threshold
overlap_threshold = self.overlap_threshold
reorder_class_weight = self.reorder_class_weight
reorder_mask_weight = self.reorder_mask_weight
# https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L675
# https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199
cls_scores, cls_labels = F.softmax(mask_cls, dim=-1)[..., :-1].max(-1) # N
mask_scores = F.softmax(mask_pred, dim=0)
binary_masks = mask_scores > object_mask_threshold # N x H x W
mask_scores_flat = mask_scores.flatten(1) # N x HW
binary_masks_flat = binary_masks.flatten(1).float() # N x HW
pixel_number_flat = binary_masks_flat.sum(1) # N
mask_scores_flat = (mask_scores_flat * binary_masks_flat).sum(1) / torch.clamp(pixel_number_flat, min=1.0) # N
reorder_score = (cls_scores ** reorder_class_weight) * (mask_scores_flat ** reorder_mask_weight) # N
reorder_indices = torch.argsort(reorder_score, dim=-1, descending=True)
panoptic_seg = torch.zeros((mask_pred.shape[1], mask_pred.shape[2]),
dtype=torch.int32, device=mask_pred.device)
segments_info = []
current_segment_id = 0
stuff_memory_list = {}
for i in range(num_mask_slots):
cur_idx = reorder_indices[i].item() # 1
cur_binary_mask = binary_masks[cur_idx] # H x W
cur_cls_score = cls_scores[cur_idx].item() # 1
cur_cls_label = cls_labels[cur_idx].item() # 1
is_thing = cur_cls_label in self.metadata.thing_dataset_id_to_contiguous_id.values()
is_confident = (is_thing and cur_cls_score > cls_threshold_thing) or (
(not is_thing) and cur_cls_score > cls_threshold_stuff)
original_pixel_number = cur_binary_mask.float().sum()
new_binary_mask = torch.logical_and(cur_binary_mask, (panoptic_seg == 0))
new_pixel_number = new_binary_mask.float().sum()
is_not_overlap_too_much = new_pixel_number > (original_pixel_number * overlap_threshold)
if is_confident and is_not_overlap_too_much:
# merge stuff regions
if not is_thing:
if int(cur_cls_label) in stuff_memory_list.keys():
panoptic_seg[new_binary_mask] = stuff_memory_list[int(cur_cls_label)]
continue
else:
stuff_memory_list[int(cur_cls_label)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[new_binary_mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(is_thing),
"category_id": int(cur_cls_label),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
mask_pred = mask_pred.softmax(dim=0)
# [Q, K]
scores = F.softmax(mask_cls[:, :-1], dim=-1)
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.sem_seg_head.num_classes
mask_pred = mask_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
result.pred_masks = (mask_pred > self.object_mask_threshold).float()
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result