SORA-3D / app.py
aiqtech's picture
Update app.py
e39e82a verified
raw
history blame
13.5 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from transformers import pipeline
from typing import Tuple, Dict, Any # Tuple import 추가
# CUDA 메모리 관리 설정
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# 환경 변수 설정
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
# 번역기 초기화
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = pipeline.run(
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
# 한글 감지 및 번역
def contains_korean(text):
return any(ord('가') <= ord(c) <= ord('힣') for c in text)
# 프롬프트 전처리
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
prompt = translated
# 프롬프트 형식 강제
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
try:
generated_image = pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
trial_id = str(uuid.uuid4())
generated_image.save(f"{TMP_DIR}/{trial_id}.png")
return generated_image
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
# 나머지 핸들러들
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_3d_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
if __name__ == "__main__":
# CUDA 사용 가능 여부 확인
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
try:
# 3D 생성 파이프라인
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained( # pipeline을 trellis_pipeline으로 변경
"JeffreyXiang/TRELLIS-image-large"
)
trellis_pipeline.to(device)
# 이미지 생성 파이프라인
flux_pipe = FluxPipeline.from_pretrained( # pipe를 flux_pipe로 변경
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
device_map="balanced"
)
# Hyper-SD LoRA 로드
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
flux_pipe.load_lora_weights(lora_path)
flux_pipe.fuse_lora(lora_scale=0.125)
# 번역기 초기화
translator = transformers.pipeline( # pipeline을 transformers.pipeline으로 변경
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
# CUDA 메모리 초기화
if torch.cuda.is_available():
torch.cuda.empty_cache()
# 초기 이미지 전처리 테스트
try:
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
trellis_pipeline.preprocess_image(test_image)
except Exception as e:
print(f"Warning: Initial preprocessing test failed: {e}")
# Gradio 인터페이스 실행
demo.launch(allowed_paths=[PERSISTENT_DIR])
except Exception as e:
print(f"Error during initialization: {e}")
raise