Spaces:
Running
Running
File size: 22,533 Bytes
6035bfe a8eb718 5dfb15d 9470e9c a8eb718 6035bfe a8eb718 6035bfe db3cf6b 6035bfe a8eb718 db3cf6b a8eb718 6035bfe 9470e9c 6035bfe 4e8ad25 6035bfe 4dd03cf f00b06e e0713c0 f00b06e 4e8ad25 f00b06e 10a5dab 4dd03cf f00b06e 4dd03cf f00b06e 4dd03cf 10a5dab a8eb718 9470e9c a8eb718 9470e9c a8eb718 0ef3920 9470e9c a8eb718 9470e9c a8eb718 9470e9c a8eb718 5dfb15d a8eb718 5dfb15d a8eb718 9470e9c 5dfb15d 9470e9c 5dfb15d 9470e9c e2baeda 9470e9c a8eb718 9470e9c a8eb718 e2baeda a8eb718 9470e9c a8eb718 e2baeda a8eb718 6035bfe 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 f20969d 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 65ee007 14e03a5 83e2123 65ee007 d972c46 14e03a5 e2baeda 6035bfe 15cf0dc 6035bfe a8eb718 14e03a5 c853ff4 6035bfe 7cbbdae c853ff4 6035bfe 7cbbdae c853ff4 6035bfe 7cbbdae c853ff4 14e03a5 7cbbdae d972c46 a8eb718 6035bfe 15cf0dc 6035bfe 14e03a5 7cbbdae 14e03a5 7cbbdae 892de37 e2baeda 9470e9c a8eb718 9470e9c a8eb718 14c240d 14e03a5 c292539 14e03a5 c292539 6035bfe 14e03a5 e2baeda 6035bfe 4495da2 9bbcc80 d6f7a9b 9bbcc80 c292539 14e03a5 81ba805 4dd03cf 81ba805 4dd03cf 81ba805 58bb0eb 4dd03cf b557bec 0370aef c9c6fdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator, List, Dict, Tuple, Any
import google.generativeai as genai
from huggingface_hub import HfApi
import requests
import re
import traceback
import time
import threading
import json
# HuggingFace ๊ด๋ จ API ํค (์คํ์ด์ค ๋ถ์ ์ฉ)
HF_TOKEN = os.getenv("HF_TOKEN")
hf_api = HfApi(token=HF_TOKEN)
# Gemini 2.0 Flash Thinking ๋ชจ๋ธ ๊ด๋ จ API ํค ๋ฐ ํด๋ผ์ด์ธํธ (LLM ์ฉ)
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-01-21")
# --------------------------------------------------
# ํ์ผ ๋ฐ ์คํ์ด์ค ๋ถ์ ๊ด๋ จ ํจ์๋ค (๊ธฐ์กด ์ฝ๋ ์ ์ง)
# --------------------------------------------------
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_file_content(space_id: str, file_path: str) -> str:
file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}"
try:
response = requests.get(file_url, headers=get_headers())
if response.status_code == 200:
return response.text
else:
return f"File not found or inaccessible: {file_path}"
except requests.RequestException:
return f"Error fetching content for file: {file_path}"
def get_space_structure(space_id: str) -> Dict:
try:
files = hf_api.list_repo_files(repo_id=space_id, repo_type="space")
tree = {"type": "directory", "path": "", "name": space_id, "children": []}
for file in files:
path_parts = file.split('/')
current = tree
for i, part in enumerate(path_parts):
if i == len(path_parts) - 1: # ํ์ผ
current["children"].append({"type": "file", "path": file, "name": part})
else:
found = False
for child in current["children"]:
if child["type"] == "directory" and child["name"] == part:
current = child
found = True
break
if not found:
new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []}
current["children"].append(new_dir)
current = new_dir
return tree
except Exception as e:
print(f"Error in get_space_structure: {str(e)}")
return {"error": f"API request error: {str(e)}"}
def format_tree_structure(tree_data: Dict, indent: str = "") -> str:
if "error" in tree_data:
return tree_data["error"]
formatted = f"{indent}{'๐' if tree_data.get('type') == 'directory' else '๐'} {tree_data.get('name', 'Unknown')}\n"
if tree_data.get("type") == "directory":
for child in sorted(tree_data.get("children", []), key=lambda x: (x.get("type", "") != "directory", x.get("name", ""))):
formatted += format_tree_structure(child, indent + " ")
return formatted
def adjust_lines_for_code(code_content: str, min_lines: int = 10, max_lines: int = 100) -> int:
num_lines = len(code_content.split('\n'))
return min(max(num_lines, min_lines), max_lines)
def analyze_space(url: str, progress=gr.Progress()):
try:
space_id = url.split('spaces/')[-1]
if not re.match(r'^[\w.-]+/[\w.-]+$', space_id):
raise ValueError(f"Invalid Space ID format: {space_id}")
progress(0.1, desc="ํ์ผ ๊ตฌ์กฐ ๋ถ์ ์ค...")
tree_structure = get_space_structure(space_id)
if "error" in tree_structure:
raise ValueError(tree_structure["error"])
tree_view = format_tree_structure(tree_structure)
progress(0.3, desc="app.py ๋ด์ฉ ๊ฐ์ ธ์ค๋ ์ค...")
app_content = get_file_content(space_id, "app.py")
progress(0.5, desc="์ฝ๋ ์์ฝ ์ค...")
summary = summarize_code(app_content)
progress(0.7, desc="์ฝ๋ ๋ถ์ ์ค...")
analysis = analyze_code(app_content)
progress(0.9, desc="์ฌ์ฉ๋ฒ ์ค๋ช
์์ฑ ์ค...")
usage = explain_usage(app_content)
app_py_lines = adjust_lines_for_code(app_content)
progress(1.0, desc="์๋ฃ")
return app_content, tree_view, tree_structure, space_id, summary, analysis, usage, app_py_lines
except Exception as e:
print(f"Error in analyze_space: {str(e)}")
print(traceback.format_exc())
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", "", None, "", "", "", "", 10
# --------------------------------------------------
# Gemini 2.0 Flash Thinking ๋ชจ๋ธ ๊ด๋ จ ํฌํผ ํจ์๋ค
# --------------------------------------------------
def format_chat_history(messages: List[ChatMessage]) -> List[Dict]:
formatted_history = []
for message in messages:
# thinking ๋ฉ์์ง(๋ฉํ๋ฐ์ดํฐ ์๋ ๋ฉ์์ง)๋ ๊ฑด๋๋๋๋ค.
if not (hasattr(message, "metadata") and message.metadata):
formatted_history.append({
"role": "user" if message.role == "user" else "assistant",
"parts": [message.content or ""]
})
return formatted_history
def gemini_chat_completion(system_message: str, user_message: str, max_tokens: int = 200, temperature: float = 0.7) -> str:
initial_messages = [
ChatMessage(role="system", content=system_message),
ChatMessage(role="user", content=user_message)
]
chat_history = format_chat_history(initial_messages)
chat = model.start_chat(history=chat_history)
final_response = ""
try:
for chunk in chat.send_message(user_message, stream=True):
parts = chunk.candidates[0].content.parts
if len(parts) == 2:
final_response += parts[1].text
else:
final_response += parts[0].text
return final_response.strip()
except Exception as e:
return f"LLM ํธ์ถ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
def summarize_code(app_content: str) -> str:
system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๊ณ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ๊ฐ๊ฒฐํ๊ฒ ์์ฝํด์ฃผ์ธ์."
user_message = f"๋ค์ Python ์ฝ๋๋ฅผ 3์ค ์ด๋ด๋ก ์์ฝํด์ฃผ์ธ์:\n\n{app_content}"
try:
return gemini_chat_completion(system_message, user_message, max_tokens=200, temperature=0.7)
except Exception as e:
return f"์์ฝ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
def analyze_code(app_content: str) -> str:
system_message = (
"๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ๋ค์ ํญ๋ชฉ์ ๋ํด ์ค๋ช
ํด์ฃผ์ธ์:\n"
"A. ๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ\n"
"B. ๊ธฐ๋ฅ์ ํจ์ฉ์ฑ ๋ฐ ๊ฐ์น\n"
"C. ํน์ฅ์ \n"
"D. ์ ์ฉ ๋์ ๋ฐ ํ๊ฒ\n"
"E. ๊ธฐ๋ํจ๊ณผ\n"
"๊ธฐ์กด ๋ฐ ์ ์ฌ ํ๋ก์ ํธ์ ๋น๊ตํ์ฌ ๋ถ์ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์."
)
user_message = f"๋ค์ Python ์ฝ๋๋ฅผ ๋ถ์ํด์ฃผ์ธ์:\n\n{app_content}"
try:
return gemini_chat_completion(system_message, user_message, max_tokens=1000, temperature=0.7)
except Exception as e:
return f"๋ถ์ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
def explain_usage(app_content: str) -> str:
system_message = "๋น์ ์ Python ์ฝ๋๋ฅผ ๋ถ์ํ์ฌ ์ฌ์ฉ๋ฒ์ ์ค๋ช
ํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ฝ๋๋ฅผ ๋ฐํ์ผ๋ก ๋ง์น ํ๋ฉด์ ๋ณด๋ ๊ฒ์ฒ๋ผ ์ฌ์ฉ๋ฒ์ ์์ธํ ์ค๋ช
ํด์ฃผ์ธ์. Markdown ํ์์ผ๋ก ์ถ๋ ฅํ์ธ์."
user_message = f"๋ค์ Python ์ฝ๋์ ์ฌ์ฉ๋ฒ์ ์ค๋ช
ํด์ฃผ์ธ์:\n\n{app_content}"
try:
return gemini_chat_completion(system_message, user_message, max_tokens=800, temperature=0.7)
except Exception as e:
return f"์ฌ์ฉ๋ฒ ์ค๋ช
์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}"
def convert_chat_history(messages: List[Any]) -> List[Tuple[str, str]]:
"""
๋ฉ์์ง ๋ชฉ๋ก์ ๊ฐ ํญ๋ชฉ์ด ChatMessage ๊ฐ์ฒด๋ผ๋ฉด (user, assistant) ํํ๋ก,
์ด๋ฏธ ํํ์ธ ๊ฒฝ์ฐ ๊ทธ๋๋ก ๋ฐํํฉ๋๋ค.
"""
conv = []
i = 0
while i < len(messages):
# ๋ง์ฝ ์ด๋ฏธ ํํ์ด๋ฉด ๊ทธ๋๋ก ์ฌ์ฉ
if isinstance(messages[i], tuple):
conv.append(messages[i])
i += 1
# ๋ง์ฝ ChatMessage ๊ฐ์ฒด๋ผ๋ฉด
elif hasattr(messages[i], "role"):
if messages[i].role == "user":
user_text = messages[i].content
bot_text = ""
if i + 1 < len(messages) and hasattr(messages[i+1], "role") and messages[i+1].role == "assistant":
bot_text = messages[i+1].content
i += 2
else:
i += 1
conv.append((user_text, bot_text))
else:
conv.append(("", messages[i].content))
i += 1
else:
i += 1
return conv
def convert_to_chatmessage(history: List[Tuple[str, str]]) -> List[ChatMessage]:
"""
ํํ ๋ชฉ๋ก์ ChatMessage ๊ฐ์ฒด ๋ชฉ๋ก์ผ๋ก ๋ณํํฉ๋๋ค.
"""
new_history = []
for tup in history:
if tup[0]:
new_history.append(ChatMessage(role="user", content=tup[0]))
if tup[1]:
new_history.append(ChatMessage(role="assistant", content=tup[1]))
return new_history
def stream_gemini_response(user_message: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
if not user_message.strip():
messages.append(ChatMessage(role="assistant", content="Please provide a non-empty text message. Empty input is not allowed."))
yield messages
return
try:
print(f"\n=== New Request (Text) ===")
print(f"User message: {user_message}")
chat_history = format_chat_history(messages)
chat = model.start_chat(history=chat_history)
response = chat.send_message(user_message, stream=True)
thought_buffer = ""
response_buffer = ""
thinking_complete = False
messages.append(
ChatMessage(
role="assistant",
content="",
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"}
)
)
for chunk in response:
parts = chunk.candidates[0].content.parts
current_chunk = parts[0].text
if len(parts) == 2 and not thinking_complete:
thought_buffer += current_chunk
print(f"\n=== Complete Thought ===\n{thought_buffer}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
response_buffer = parts[1].text
print(f"\n=== Starting Response ===\n{response_buffer}")
messages.append(
ChatMessage(
role="assistant",
content=response_buffer
)
)
thinking_complete = True
elif thinking_complete:
response_buffer += current_chunk
print(f"\n=== Response Chunk ===\n{current_chunk}")
messages[-1] = ChatMessage(
role="assistant",
content=response_buffer
)
else:
thought_buffer += current_chunk
print(f"\n=== Thinking Chunk ===\n{current_chunk}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
print(f"\n=== Final Response ===\n{response_buffer}")
except Exception as e:
print(f"\n=== Error ===\n{str(e)}")
messages.append(
ChatMessage(
role="assistant",
content=f"I apologize, but I encountered an error: {str(e)}"
)
)
yield messages
def respond(message: str, history: List[ChatMessage]) -> Iterator[List[Tuple[str, str]]]:
"""
stream_gemini_response()๋ฅผ ํธ์ถํ ํ, ์ถ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ํํ ๋ชฉ๋ก์ผ๋ก ๋ณํํ์ฌ ๋ฐํํฉ๋๋ค.
"""
for updated_messages in stream_gemini_response(message, history):
yield convert_chat_history(updated_messages)
def user_message(msg: str, history: List[ChatMessage]) -> Tuple[str, List[ChatMessage]]:
history.append(ChatMessage(role="user", content=msg))
return "", history
def respond_wrapper(message, chat_history, max_tokens, temperature, top_p):
# chat_history๊ฐ ํํ ๋ชฉ๋ก์ด๋ผ๋ฉด ChatMessage ๊ฐ์ฒด๋ก ๋ณํ
if chat_history and isinstance(chat_history[0], tuple):
chat_history = convert_to_chatmessage(chat_history)
for updated in stream_gemini_response(message, chat_history):
yield "", convert_chat_history(updated)
# --------------------------------------------------
# Gradio UI ๊ตฌ์ฑ
# --------------------------------------------------
def create_ui():
try:
css = """
/* ์ ์ฒด ๋ฐฐ๊ฒฝ ๋ฐ ๊ธฐ๋ณธ ๊ธ๊ผด ์ค์ */
body {
background-color: #f9f9f9;
font-family: 'Helvetica Neue', Arial, sans-serif;
color: #333;
}
/* ํ๋จ ํธํฐ ์จ๊น */
footer { visibility: hidden; }
/* ์ถ๋ ฅ ๊ทธ๋ฃน ์คํ์ผ: ๋ฐ์ ๋ฐฐ๊ฒฝ, ๋ถ๋๋ฌ์ด ํ
๋๋ฆฌ์ ๊ทธ๋ฆผ์ */
.output-group {
border: 1px solid #ccc;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
background-color: #ffffff;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* ์คํฌ๋กค ์์ญ ์ค์ */
.scroll-lock {
overflow-y: auto !important;
max-height: 300px !important;
}
.tree-view-scroll {
overflow-y: auto !important;
max-height: 400px !important;
}
.full-height {
height: 80vh !important;
overflow-y: auto !important;
}
/* ์ฝ๋ ๋ฐ์ค ์คํ์ผ: ๋ชจ๋
ธ์คํ์ด์ค ํฐํธ์ ๋ฐ์ ๋ฐฐ๊ฒฝ */
.code-box {
overflow-x: auto !important;
overflow-y: auto !important;
white-space: pre !important;
background-color: #f5f5f5;
border-radius: 4px;
padding: 10px;
font-family: 'Courier New', Courier, monospace;
}
.code-box > div { min-width: 100% !important; }
.code-box > div > textarea {
word-break: normal !important;
overflow-wrap: normal !important;
}
/* ํญ ๋ด๋น๊ฒ์ด์
์คํ์ผ: ๋จ์ํ๊ณ ๊น๋ํ ๋์์ธ */
.tab-nav {
background-color: #ffffff;
border-bottom: 1px solid #ccc;
display: flex;
}
.tab-nav button {
background: none;
border: none;
padding: 10px 20px;
margin: 0;
cursor: pointer;
font-size: 16px;
color: #555;
transition: color 0.3s, border-bottom 0.3s;
}
.tab-nav button:hover,
.tab-nav button.selected {
color: #000;
border-bottom: 2px solid #007BFF;
}
/* ์
๋ ฅ์ฐฝ ๋ฐ ํ
์คํธ ์์ญ ์คํ์ผ */
input[type="text"], textarea {
color: #333;
background-color: #fff;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
}
"""
with gr.Blocks(theme="default", css=css) as demo:
gr.Markdown("# MOUSE: Space Research Thinking", elem_classes="header-markdown")
with gr.Tabs() as tabs:
with gr.TabItem("๋ถ์"):
with gr.Row():
with gr.Column(scale=6):
url_input = gr.Textbox(label="HuggingFace Space URL", placeholder="์: https://huggingface.co/spaces/username/space_name")
analyze_button = gr.Button("๋ถ์", variant="primary")
with gr.Group(elem_classes="output-group scroll-lock"):
summary_output = gr.Markdown(label="์์ฝ (3์ค ์ด๋ด)")
with gr.Group(elem_classes="output-group scroll-lock"):
analysis_output = gr.Markdown(label="๋ถ์")
with gr.Group(elem_classes="output-group scroll-lock"):
usage_output = gr.Markdown(label="์ฌ์ฉ๋ฒ")
with gr.Group(elem_classes="output-group tree-view-scroll"):
tree_view_output = gr.Textbox(label="ํ์ผ ๊ตฌ์กฐ (Tree View)", lines=30)
with gr.Column(scale=4):
with gr.Group(elem_classes="output-group full-height"):
code_tabs = gr.Tabs()
with code_tabs:
with gr.TabItem("app.py"):
app_py_content = gr.Code(
language="python",
label="app.py",
lines=200,
elem_classes="full-height code-box"
)
with gr.TabItem("requirements.txt"):
requirements_content = gr.Textbox(
label="requirements.txt",
lines=200,
elem_classes="full-height code-box"
)
with gr.TabItem("AI ์ฝ๋์ฑ"):
gr.Markdown("## : ์์ ๋ฅผ ์
๋ ฅ/์ ํํ๊ณ , ์ด์ด์ ๋ณต์ฌํ app.py ์์ค์ฝ๋๋ฅผ ๋ถ์ฌ ๋ฃ์ผ์ธ์", elem_classes="header-markdown")
# ์ฑํ
๋ฐ์ค ๋์ด๋ฅผ 400px๋ก ์ง์ ํ์ฌ ํ๋ฉด ๋์ด์ ๋ง๊ฒ ์ค์.
chatbot = gr.Chatbot(
label="๋ํ",
elem_classes="output-group",
height=400
)
msg = gr.Textbox(label="๋ฉ์์ง", placeholder="๋ฉ์์ง๋ฅผ ์
๋ ฅํ์ธ์...")
# ์จ๊ฒจ์ง ํ๋ผ๋ฏธํฐ
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens", visible=False)
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature", visible=False)
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P", visible=False)
examples = [
["์์ธํ ์ฌ์ฉ ๋ฐฉ๋ฒ์ ๋ง์น ํ๋ฉด์ ๋ณด๋ฉด์ ์ค๋ช
ํ๋ฏ์ด 4000 ํ ํฐ ์ด์ ์์ธํ ์ค๋ช
ํ๋ผ"],
["FAQ 20๊ฑด์ ์์ธํ๊ฒ ์์ฑํ๋ผ. 4000ํ ํฐ ์ด์ ์ฌ์ฉํ๋ผ."],
["์ฌ์ฉ ๋ฐฉ๋ฒ๊ณผ ์ฐจ๋ณ์ , ํน์ง, ๊ฐ์ ์ ์ค์ฌ์ผ๋ก 4000 ํ ํฐ ์ด์ ์ ํ๋ธ ์์ ์คํฌ๋ฆฝํธ ํํ๋ก ์์ฑํ๋ผ"],
["๋ณธ ์๋น์ค๋ฅผ SEO ์ต์ ํํ์ฌ ๋ธ๋ก๊ทธ ํฌ์คํธ๋ก 4000 ํ ํฐ ์ด์ ์์ฑํ๋ผ"],
["ํนํ ์ถ์์ ํ์ฉํ ํ์ ์ ์ธ ์ฐฝ์ ๋ฐ๋ช
๋ด์ฉ์ ์ค์ฌ์ผ๋ก 4000 ํ ํฐ ์ด์ ์์ฑํ๋ผ."],
["ํ์ ์ ์ด๊ณ ๋
ผ๋ฆฌ์ ์ธ ์ ๋ฌธ ๋
ผ๋ฌธ์ ํ์์ผ๋ก 4000 ํ ํฐ ์ด์ ์์ฑํ๋ผ."],
["๊ณ์ ์ด์ด์ ๋ต๋ณํ๋ผ"],
]
gr.Examples(examples, inputs=msg)
msg.submit(respond_wrapper, [msg, chatbot, max_tokens, temperature, top_p], [msg, chatbot])
with gr.TabItem("Recommended Best"):
gr.Markdown(
"Discover the best recommended HuggingFace Spaces [here](https://huggingface.co/spaces/openfree/Korean-Leaderboard).",
elem_id="recommended-best"
)
# ์ํ ์ ์ฅ์ฉ ๋ณ์
space_id_state = gr.State()
tree_structure_state = gr.State()
app_py_content_lines = gr.State()
analyze_button.click(
analyze_space,
inputs=[url_input],
outputs=[app_py_content, tree_view_output, tree_structure_state, space_id_state, summary_output, analysis_output, usage_output, app_py_content_lines]
).then(
lambda space_id: get_file_content(space_id, "requirements.txt"),
inputs=[space_id_state],
outputs=[requirements_content]
)
app_py_content.change(lambda lines: gr.update(lines=lines), inputs=[app_py_content_lines], outputs=[app_py_content])
return demo
except Exception as e:
print(f"Error in create_ui: {str(e)}")
print(traceback.format_exc())
raise
if __name__ == "__main__":
try:
print("Starting HuggingFace Space Analyzer...")
demo = create_ui()
print("UI created successfully.")
print("Configuring Gradio queue...")
demo.queue()
print("Gradio queue configured.")
print("Launching Gradio app...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_api=False
)
print("Gradio app launched successfully.")
except Exception as e:
print(f"Error in main: {str(e)}")
print("Detailed error information:")
print(traceback.format_exc())
raise
|