Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install openpyxl') | |
os.system('pip install sentence-transformers') | |
import pandas as pd | |
import gradio as gr | |
import statistics | |
from sklearn.neighbors import NearestNeighbors | |
from sentence_transformers import SentenceTransformer | |
df = pd.read_parquet('df_encoded.parquet') | |
df['neighbourhood group'][0:2500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Manhattan') | |
df['neighbourhood group'][2500:5000] = df['neighbourhood group'][0:2500].apply(lambda x : 'Brooklyn') | |
df['neighbourhood group'][5000:7500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Queens') | |
df['neighbourhood group'][7500:] = df['neighbourhood group'][0:2500].apply(lambda x : 'Bronx') | |
df['location'] = df['neighbourhood group'] | |
df = df[['price', 'sq. meters', 'description', 'location', 'host name', 'cancellation_policy', 'house_rules', 'text_vector_']] | |
df = df.reset_index(drop=True) | |
df | |
model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2 | |
#prepare model #we run it anew in the search function every time, after the initial filtering | |
# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist()) | |
def closest_number(x): | |
closest_numbers = [25, 40, 45, 55, 60, 70] | |
closest_number = closest_numbers[0] | |
min_distance = abs(x - closest_number) | |
for number in closest_numbers[1:]: | |
distance = abs(x - number) | |
if distance < min_distance: | |
closest_number = number | |
min_distance = distance | |
return closest_number | |
def search(df, query): | |
product = model.encode(query).tolist() | |
# product = df.iloc[0]['text_vector_'] #use one of the products as sample | |
nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist()) | |
distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object | |
#print out the description of every recommended product | |
df_search = df.iloc[list(indices)[0]].drop(['text_vector_'], axis=1) #.sort_values('avgFeedbackScore', ascending=False) | |
return df_search.sort_values('price', ascending=False) | |
def filter_df(df, column_name, filter_type, filter_value): | |
if filter_type == '==': | |
df_filtered = df[df[column_name]==filter_value] | |
elif filter_type == '>=': | |
df_filtered = df[df[column_name]>=filter_value] | |
elif filter_type == '<=': | |
df_filtered = df[df[column_name]<=filter_value] | |
return df_filtered | |
def predict(history, input1, input2, input3, input4): | |
history.append([input1, input2, input3, input4]) | |
print(history) | |
df_location = filter_df(df, 'location', '==', input3) | |
df_size = filter_df(df_location, 'sq. meters', '==', input2) | |
df_price = filter_df(df_size, 'price', '<=', input1) | |
df_result = search(df_price, input4) | |
prediction = [ | |
round(statistics.mean([x[0] for x in history])), #price | |
closest_number(statistics.mean([x[1] for x in history])), #square meters | |
statistics.mode([x[2] for x in history]) #state | |
] | |
return df_result, prediction | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo: | |
history = gr.Variable(value=[]) #beginning | |
gr.Markdown( | |
""" | |
# Airbnb Search Engine | |
""" | |
) | |
input1 = gr.Slider(100, 1200, value=700, step_size=100, label="Max Price") | |
input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45) | |
input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Brooklyn') | |
input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!') | |
btn = gr.Button(value="Search for a Room") | |
output1 = gr.Dataframe() | |
output2 = gr.Textbox(label='prediction for the next search') | |
# btn.click(greet, inputs='text', outputs=['dataframe']) | |
btn.click(predict, [history, input1, input2, input3, input4], [output1, output2]) | |
demo.launch(share=False) |