Spaces:
Runtime error
Runtime error
Michelangiolo
commited on
Commit
•
e4c59f6
1
Parent(s):
00bf920
changes
Browse files- airbnb.ipynb +167 -49
- app.py +6 -6
- history.ipynb +107 -0
airbnb.ipynb
CHANGED
@@ -337,56 +337,9 @@
|
|
337 |
},
|
338 |
{
|
339 |
"cell_type": "code",
|
340 |
-
"execution_count":
|
341 |
"metadata": {},
|
342 |
-
"outputs": [
|
343 |
-
{
|
344 |
-
"name": "stderr",
|
345 |
-
"output_type": "stream",
|
346 |
-
"text": [
|
347 |
-
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Slider, please remove them: {'step_size': 100}\n",
|
348 |
-
" warnings.warn(\n",
|
349 |
-
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
|
350 |
-
" warnings.warn(\n"
|
351 |
-
]
|
352 |
-
},
|
353 |
-
{
|
354 |
-
"name": "stdout",
|
355 |
-
"output_type": "stream",
|
356 |
-
"text": [
|
357 |
-
"Running on local URL: http://127.0.0.1:7901\n",
|
358 |
-
"\n",
|
359 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
360 |
-
]
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"data": {
|
364 |
-
"text/html": [
|
365 |
-
"<div><iframe src=\"http://127.0.0.1:7901/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
366 |
-
],
|
367 |
-
"text/plain": [
|
368 |
-
"<IPython.core.display.HTML object>"
|
369 |
-
]
|
370 |
-
},
|
371 |
-
"metadata": {},
|
372 |
-
"output_type": "display_data"
|
373 |
-
},
|
374 |
-
{
|
375 |
-
"data": {
|
376 |
-
"text/plain": []
|
377 |
-
},
|
378 |
-
"execution_count": 213,
|
379 |
-
"metadata": {},
|
380 |
-
"output_type": "execute_result"
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"name": "stdout",
|
384 |
-
"output_type": "stream",
|
385 |
-
"text": [
|
386 |
-
"[[700, 45, 'Queens', 'I want to take a break from work 😴!!!']]\n"
|
387 |
-
]
|
388 |
-
}
|
389 |
-
],
|
390 |
"source": [
|
391 |
"import gradio as gr\n",
|
392 |
"import statistics\n",
|
@@ -459,6 +412,171 @@
|
|
459 |
" btn.click(predict, [input1, input2, input3, input4], [output1, output2])\n",
|
460 |
"demo.launch(share=False)"
|
461 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
}
|
463 |
],
|
464 |
"metadata": {
|
|
|
337 |
},
|
338 |
{
|
339 |
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
"metadata": {},
|
342 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
"source": [
|
344 |
"import gradio as gr\n",
|
345 |
"import statistics\n",
|
|
|
412 |
" btn.click(predict, [input1, input2, input3, input4], [output1, output2])\n",
|
413 |
"demo.launch(share=False)"
|
414 |
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": null,
|
419 |
+
"metadata": {},
|
420 |
+
"outputs": [],
|
421 |
+
"source": [
|
422 |
+
"import os\n",
|
423 |
+
"os.system('pip install openpyxl')\n",
|
424 |
+
"os.system('pip install sentence-transformers')\n",
|
425 |
+
"import pandas as pd\n",
|
426 |
+
"import gradio as gr\n",
|
427 |
+
"import statistics\n",
|
428 |
+
"from sklearn.neighbors import NearestNeighbors\n",
|
429 |
+
"from sentence_transformers import SentenceTransformer\n",
|
430 |
+
"\n",
|
431 |
+
"df = pd.read_parquet('df_encoded.parquet')\n",
|
432 |
+
"df['neighbourhood group'][0:2500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Manhattan')\n",
|
433 |
+
"df['neighbourhood group'][2500:5000] = df['neighbourhood group'][0:2500].apply(lambda x : 'Brooklyn')\n",
|
434 |
+
"df['neighbourhood group'][5000:7500] = df['neighbourhood group'][0:2500].apply(lambda x : 'Queens')\n",
|
435 |
+
"df['neighbourhood group'][7500:] = df['neighbourhood group'][0:2500].apply(lambda x : 'Bronx')\n",
|
436 |
+
"df['location'] = df['neighbourhood group']\n",
|
437 |
+
"df = df[['price', 'sq. meters', 'description', 'location', 'host name', 'cancellation_policy', 'house_rules', 'text_vector_']]\n",
|
438 |
+
"df = df.reset_index(drop=True)\n",
|
439 |
+
"df\n",
|
440 |
+
"\n",
|
441 |
+
"model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2\n",
|
442 |
+
"\n",
|
443 |
+
"#prepare model #we run it anew in the search function every time, after the initial filtering\n",
|
444 |
+
"# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())\n",
|
445 |
+
"\n",
|
446 |
+
"def closest_number(x):\n",
|
447 |
+
" closest_numbers = [25, 40, 45, 55, 60, 70]\n",
|
448 |
+
" closest_number = closest_numbers[0]\n",
|
449 |
+
" min_distance = abs(x - closest_number)\n",
|
450 |
+
" for number in closest_numbers[1:]:\n",
|
451 |
+
" distance = abs(x - number)\n",
|
452 |
+
" if distance < min_distance:\n",
|
453 |
+
" closest_number = number\n",
|
454 |
+
" min_distance = distance\n",
|
455 |
+
" return closest_number\n",
|
456 |
+
"\n",
|
457 |
+
"def search(df, query):\n",
|
458 |
+
" product = model.encode(query).tolist()\n",
|
459 |
+
" # product = df.iloc[0]['text_vector_'] #use one of the products as sample\n",
|
460 |
+
"\n",
|
461 |
+
" nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())\n",
|
462 |
+
" distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object\n",
|
463 |
+
"\n",
|
464 |
+
" #print out the description of every recommended product\n",
|
465 |
+
" df_search = df.iloc[list(indices)[0]].drop(['text_vector_'], axis=1) #.sort_values('avgFeedbackScore', ascending=False)\n",
|
466 |
+
"\n",
|
467 |
+
" return df_search.sort_values('price', ascending=False)\n",
|
468 |
+
"\n",
|
469 |
+
"def filter_df(df, column_name, filter_type, filter_value):\n",
|
470 |
+
" if filter_type == '==':\n",
|
471 |
+
" df_filtered = df[df[column_name]==filter_value]\n",
|
472 |
+
" elif filter_type == '>=':\n",
|
473 |
+
" df_filtered = df[df[column_name]>=filter_value]\n",
|
474 |
+
" elif filter_type == '<=':\n",
|
475 |
+
" df_filtered = df[df[column_name]<=filter_value]\n",
|
476 |
+
" return df_filtered"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": 7,
|
482 |
+
"metadata": {},
|
483 |
+
"outputs": [],
|
484 |
+
"source": [
|
485 |
+
"def predict(history, input1, input2, input3, input4):\n",
|
486 |
+
" history.append([input1, input2, input3, input4])\n",
|
487 |
+
"\n",
|
488 |
+
" print(history)\n",
|
489 |
+
" df_location = filter_df(df, 'location', '==', input3)\n",
|
490 |
+
" df_size = filter_df(df_location, 'sq. meters', '==', input2)\n",
|
491 |
+
" df_price = filter_df(df_size, 'price', '<=', input1)\n",
|
492 |
+
" df_result = search(df_price, input4)\n",
|
493 |
+
"\n",
|
494 |
+
" prediction = [\n",
|
495 |
+
" round(statistics.mean([x[0] for x in history])), #price\n",
|
496 |
+
" closest_number(statistics.mean([x[1] for x in history])), #square meters\n",
|
497 |
+
" statistics.mode([x[2] for x in history]) #state\n",
|
498 |
+
" ]\n",
|
499 |
+
"\n",
|
500 |
+
" print(history)\n",
|
501 |
+
"\n",
|
502 |
+
" return df_result, prediction"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": 8,
|
508 |
+
"metadata": {},
|
509 |
+
"outputs": [
|
510 |
+
{
|
511 |
+
"name": "stderr",
|
512 |
+
"output_type": "stream",
|
513 |
+
"text": [
|
514 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Slider, please remove them: {'step_size': 100}\n",
|
515 |
+
" warnings.warn(\n",
|
516 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
|
517 |
+
" warnings.warn(\n"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"name": "stdout",
|
522 |
+
"output_type": "stream",
|
523 |
+
"text": [
|
524 |
+
"Running on local URL: http://127.0.0.1:7863\n",
|
525 |
+
"\n",
|
526 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
527 |
+
]
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"data": {
|
531 |
+
"text/html": [
|
532 |
+
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
533 |
+
],
|
534 |
+
"text/plain": [
|
535 |
+
"<IPython.core.display.HTML object>"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
"metadata": {},
|
539 |
+
"output_type": "display_data"
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"data": {
|
543 |
+
"text/plain": []
|
544 |
+
},
|
545 |
+
"execution_count": 8,
|
546 |
+
"metadata": {},
|
547 |
+
"output_type": "execute_result"
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"name": "stdout",
|
551 |
+
"output_type": "stream",
|
552 |
+
"text": [
|
553 |
+
"[[700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!']]\n",
|
554 |
+
"[[700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!']]\n",
|
555 |
+
"[[700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!'], [700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!']]\n",
|
556 |
+
"[[700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!'], [700, 45, 'Brooklyn', 'I want to take a break from work 😴!!!']]\n"
|
557 |
+
]
|
558 |
+
}
|
559 |
+
],
|
560 |
+
"source": [
|
561 |
+
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
|
562 |
+
" history = gr.Variable(value=[]) #beginning\n",
|
563 |
+
" gr.Markdown(\n",
|
564 |
+
" \"\"\"\n",
|
565 |
+
" # Airbnb Search Engine\n",
|
566 |
+
" \"\"\"\n",
|
567 |
+
" )\n",
|
568 |
+
" input1 = gr.Slider(100, 1200, value=700, step_size=100, label=\"Max Price\")\n",
|
569 |
+
" input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45)\n",
|
570 |
+
" input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Brooklyn')\n",
|
571 |
+
" input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')\n",
|
572 |
+
"\n",
|
573 |
+
" btn = gr.Button(value=\"Search for a Room\")\n",
|
574 |
+
" output1 = gr.Dataframe()\n",
|
575 |
+
" output2 = gr.Textbox(label='prediction for the next search')\n",
|
576 |
+
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
|
577 |
+
" btn.click(predict, [history, input1, input2, input3, input4], [output1, output2])\n",
|
578 |
+
"demo.launch(share=False)"
|
579 |
+
]
|
580 |
}
|
581 |
],
|
582 |
"metadata": {
|
app.py
CHANGED
@@ -23,7 +23,7 @@ model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-ba
|
|
23 |
# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())
|
24 |
|
25 |
def closest_number(x):
|
26 |
-
closest_numbers = [
|
27 |
closest_number = closest_numbers[0]
|
28 |
min_distance = abs(x - closest_number)
|
29 |
for number in closest_numbers[1:]:
|
@@ -54,8 +54,7 @@ def filter_df(df, column_name, filter_type, filter_value):
|
|
54 |
df_filtered = df[df[column_name]<=filter_value]
|
55 |
return df_filtered
|
56 |
|
57 |
-
history
|
58 |
-
def predict(input1, input2, input3, input4):
|
59 |
history.append([input1, input2, input3, input4])
|
60 |
|
61 |
print(history)
|
@@ -66,13 +65,14 @@ def predict(input1, input2, input3, input4):
|
|
66 |
|
67 |
prediction = [
|
68 |
round(statistics.mean([x[0] for x in history])), #price
|
69 |
-
closest_number(statistics.mean([x[1] for x in history])), #square
|
70 |
statistics.mode([x[2] for x in history]) #state
|
71 |
]
|
72 |
|
73 |
return df_result, prediction
|
74 |
|
75 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:
|
|
|
76 |
gr.Markdown(
|
77 |
"""
|
78 |
# Airbnb Search Engine
|
@@ -80,12 +80,12 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', n
|
|
80 |
)
|
81 |
input1 = gr.Slider(100, 1200, value=700, step_size=100, label="Max Price")
|
82 |
input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45)
|
83 |
-
input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='
|
84 |
input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')
|
85 |
|
86 |
btn = gr.Button(value="Search for a Room")
|
87 |
output1 = gr.Dataframe()
|
88 |
output2 = gr.Textbox(label='prediction for the next search')
|
89 |
# btn.click(greet, inputs='text', outputs=['dataframe'])
|
90 |
-
btn.click(predict, [input1, input2, input3, input4], [output1, output2])
|
91 |
demo.launch(share=False)
|
|
|
23 |
# nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())
|
24 |
|
25 |
def closest_number(x):
|
26 |
+
closest_numbers = [25, 40, 45, 55, 60, 70]
|
27 |
closest_number = closest_numbers[0]
|
28 |
min_distance = abs(x - closest_number)
|
29 |
for number in closest_numbers[1:]:
|
|
|
54 |
df_filtered = df[df[column_name]<=filter_value]
|
55 |
return df_filtered
|
56 |
|
57 |
+
def predict(history, input1, input2, input3, input4):
|
|
|
58 |
history.append([input1, input2, input3, input4])
|
59 |
|
60 |
print(history)
|
|
|
65 |
|
66 |
prediction = [
|
67 |
round(statistics.mean([x[0] for x in history])), #price
|
68 |
+
closest_number(statistics.mean([x[1] for x in history])), #square meters
|
69 |
statistics.mode([x[2] for x in history]) #state
|
70 |
]
|
71 |
|
72 |
return df_result, prediction
|
73 |
|
74 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:
|
75 |
+
history = gr.Variable(value=[]) #beginning
|
76 |
gr.Markdown(
|
77 |
"""
|
78 |
# Airbnb Search Engine
|
|
|
80 |
)
|
81 |
input1 = gr.Slider(100, 1200, value=700, step_size=100, label="Max Price")
|
82 |
input2 = gr.Radio([25, 40, 45, 55, 60, 70], multiselect=False, label='square meters', value=45)
|
83 |
+
input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Brooklyn')
|
84 |
input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')
|
85 |
|
86 |
btn = gr.Button(value="Search for a Room")
|
87 |
output1 = gr.Dataframe()
|
88 |
output2 = gr.Textbox(label='prediction for the next search')
|
89 |
# btn.click(greet, inputs='text', outputs=['dataframe'])
|
90 |
+
btn.click(predict, [history, input1, input2, input3, input4], [output1, output2])
|
91 |
demo.launch(share=False)
|
history.ipynb
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
|
13 |
+
" warnings.warn(\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "stdout",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
21 |
+
"\n",
|
22 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"data": {
|
27 |
+
"text/html": [
|
28 |
+
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
29 |
+
],
|
30 |
+
"text/plain": [
|
31 |
+
"<IPython.core.display.HTML object>"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"metadata": {},
|
35 |
+
"output_type": "display_data"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"data": {
|
39 |
+
"text/plain": []
|
40 |
+
},
|
41 |
+
"execution_count": 2,
|
42 |
+
"metadata": {},
|
43 |
+
"output_type": "execute_result"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "stdout",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"[40]\n",
|
50 |
+
"[40, 30]\n",
|
51 |
+
"[40, 30, 10]\n",
|
52 |
+
"[40, 30, 10, 10]\n",
|
53 |
+
"[40, 30, 10, 10, 10]\n"
|
54 |
+
]
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"source": [
|
58 |
+
"import gradio as gr\n",
|
59 |
+
"import statistics\n",
|
60 |
+
"\n",
|
61 |
+
"def predict(history, input1):\n",
|
62 |
+
" history.append(input1)\n",
|
63 |
+
"\n",
|
64 |
+
" print(history)\n",
|
65 |
+
" total = statistics.mean(history)\n",
|
66 |
+
"\n",
|
67 |
+
" return total\n",
|
68 |
+
"\n",
|
69 |
+
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
|
70 |
+
" gr.Markdown(\n",
|
71 |
+
" \"\"\"\n",
|
72 |
+
" # Gradio with History\n",
|
73 |
+
" \"\"\"\n",
|
74 |
+
" )\n",
|
75 |
+
" history = gr.Variable(value=[]) #beginning\n",
|
76 |
+
" input1 = gr.Radio([10, 20, 30, 40, 50], multiselect=False, label='value')\n",
|
77 |
+
" btn = gr.Button(value=\"Search for a Room\")\n",
|
78 |
+
" output1 = gr.Textbox(label='value')\n",
|
79 |
+
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
|
80 |
+
" btn.click(predict, [history, input1], [output1])\n",
|
81 |
+
"demo.launch(share=False)"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"metadata": {
|
86 |
+
"kernelspec": {
|
87 |
+
"display_name": "Python 3",
|
88 |
+
"language": "python",
|
89 |
+
"name": "python3"
|
90 |
+
},
|
91 |
+
"language_info": {
|
92 |
+
"codemirror_mode": {
|
93 |
+
"name": "ipython",
|
94 |
+
"version": 3
|
95 |
+
},
|
96 |
+
"file_extension": ".py",
|
97 |
+
"mimetype": "text/x-python",
|
98 |
+
"name": "python",
|
99 |
+
"nbconvert_exporter": "python",
|
100 |
+
"pygments_lexer": "ipython3",
|
101 |
+
"version": "3.9.13"
|
102 |
+
},
|
103 |
+
"orig_nbformat": 4
|
104 |
+
},
|
105 |
+
"nbformat": 4,
|
106 |
+
"nbformat_minor": 2
|
107 |
+
}
|